Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study
نویسندگان
چکیده
A large-eddy simulation (LES) study is presented that investigates the spatial variability of temporal eddy covariance fluxes and the systematic underestimation of representative fluxes linked to them. It extends a prior numerical study by performing high resolution simulations that allow for virtual measurements down to 20m in a convective boundary layer, so that conditions for small tower measurement sites can be analysed. It accounts for different convective regimes as the wind speed and the near-surface heat flux are varied.Moreover, it is the first LES imbalance study that extends to the stable boundary layer. It reveals shortcomings of single site measurements and the necessity of using horizontally-distributed observation networks. The imbalances in the convective case are attributed to a locally non-vanishing mean vertical advection due to turbulent organised structures (TOS). The strength of the TOS and thus the imbalance magnitude depends on height, the horizontal mean wind and the convection type. Contrary to the results of a prior study, TOS cannot generally be responsible for large energy imbalances: at low observation heights (corresponding to small towers and near-surface energy balance stations) the TOS related imbalances are generally about one order of magnitude smaller than those in field experiments. However, TOS may cause large imbalances at large towers not only in the case of cellular convection and low wind speeds, as found in the previous study, but also in the case of roll convection at large wind speeds. In the stably stratified boundary layer for all observation heights neither TOS nor significant imbalances are observed. G. Steinfeld (B) · M. O. Letzel · S. Raasch Institut für Meteorologie und Klimatologie, Universität Hannover, Hannover, Germany e-mail: [email protected] M. Kanda ·A. Inagaki Department of International Development Engineering, Tokyo Institute of Technology, Tokyo, Japan 78 Boundary-Layer Meteorol (2007) 123:77–98 Attempting to reduce imbalances in convective situations by applying the conventional linear detrending method increases the systematic flux underestimation. Thus, a new filter method is proposed.
منابع مشابه
The Spatial Variability of Energy and Carbon Dioxide Fluxes at the Floor of a Deciduous Forest
Fluxes of carbon dioxide, water and sensible heat were measured using three different eddy covariance systems above the forest floor of a closed deciduous forest (leaf area index ≈ 6). The primary objective was to examine the representativeness of a single eddy covariance system in estimating soil respiration for time scales ranging from one-half hour to more than one week. Experiments were con...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملAssessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid
Combining flux tower measurements with remote sensing or land surface models is generally regarded as an efficient method to scale up flux data from site to region. However, due to the heterogeneous nature of the vegetated land surface, the changing flux source areas and the mismatching between ground source areas and remote sensing grids, direct use of in-situ flux measurements can lead to maj...
متن کاملLarge eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کامل