Surveillance of the gastrointestinal mucosa by sensory neurons.
نویسندگان
چکیده
A dense network of extrinsic and intrinsic sensory neurons supplies the gastrointestinal tract. Intrinsic sensory neurons provide the enteric nervous system with the kind of information that this brain of the gut requires for its autonomic control of digestion, whereas extrinsic afferents notify the brain about processes that are relevant to energy and fluid homeostasis and the sensation of discomfort and pain. The sensory repertoire of afferent neurons is extended by their responsiveness to mediators released from enteroendocrine and immune cells, which act like "taste buds" of the gut and serve as interface between the gastrointestinal lumen and the sensory nerve terminals in the lamina propria of the mucosa. Functional bowel disorders such as non-ulcer dyspepsia and irritable bowel syndrome are characterized by abdominal discomfort or pain in the absence of an identifiable organic cause. It is hypothesized with good reason that infection, inflammation or trauma causes sensory pathways to undergo profound phenotypic and functional alterations that outlast the acute insult. The pertinent changes involve an exaggerated sensitivity of the peripheral afferent nerve fibres as well as a distorted processing and representation of the incoming information in the brain. This concept identifies a number of receptors and ion channels that are selectively expressed by primary afferent neurons as important molecular targets at which to aim novel therapies for functional bowel disorders.
منابع مشابه
Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain.
The digestive tract is supplied by extrinsic and intrinsic sensory neurones that, together with endocrine and immune cells, form a surveillance network that is essential to gut function. This article focuses on the responses of extrinsic afferent neurones to chemical insults of the gastrointestinal mucosa and their pathophysiological relevance to mucosal integrity and abdominal pain. Within the...
متن کاملMucosal stimulation activates secretomotor neurons via long myenteric pathways in guinea pig ileum.
This study examined whether mucosal stimulation activates long secretomotor neural reflexes and, if so, how they are organized. The submucosa of in vitro full thickness guinea pig ileal preparations was exposed in the distal portion and intracellular recordings were obtained from electrophysiologically identified secretomotor neurons. Axons in the intact mucosa of the oral segment were stimulat...
متن کاملHistamine is involved in gastric vasodilation during acid back diffusion via activation of sensory neurons.
Protective vasodilation during acid back diffusion into the rat gastric mucosa depends on activation of sensory neurons and mast cell degranulation with histamine release. We hypothesized that these two mediator systems interact and that histamine partly exerts its effect via sensory nerves. Gastric blood flow (GBF) and luminal histamine were measured in chambered stomachs, and mast cell number...
متن کاملSecretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies.
In this study, we evaluated the vagal afferent response to secretin at physiological concentrations and localized the site of secretin's action on vagal afferent pathways in the rat. The discharge of sensory neurons supplying the gastrointestinal tract was recorded from nodose ganglia. Of 91 neurons activated by electrical vagal stimulation, 19 neurons showed an increase in firing rate in respo...
متن کاملRole of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat
Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physiology and pharmacology : an official journal of the Polish Physiological Society
دوره 52 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2001