Superoxide Dismutase in the Suppression of Tumor Cell Growth by Manganese The Role of Cellular Glutathione Peroxidase Redox Regulation

نویسندگان

  • Shijun Li
  • Tao Yan
  • Ji-Qin Yang
  • Terry D. Oberley
  • Larry W. Oberley
چکیده

Manganese-containing superoxide dismutase (MnSOD) is an essential primary antioxidant enzyme that converts superoxide radical to hydrogen peroxide and molecular oxygen within the mitochondrial matrix. Cytosolic glutathione peroxidase (GPX) converts hydrogen peroxide into water. MnSOD is reduced in a variety of tumor types and has been proposed to be a new kind of tumor suppressor gene, but the mechanism(s) by which MnSOD suppresses malignancy is unclear. According to the enzymatic reactions catalyzed by MnSOD and cytosolic GPX, change in the cellular redox status, especially change attributable to accumulation of hydrogen peroxide or other hydroperoxides, is a possible reason to explain the suppression of tumor growth observed in MnSOD-overexpressing cells. To test this possible mechanism, we transfected human cytosolic GPX cDNA into human glioma cells overexpressing MnSOD. The results showed that GPX overexpression not only reversed the tumor cell growth inhibition caused by MnSOD overexpression but also altered the cellular contents of total glutathione, reduced glutathione, oxidized glutathione, and intracellular reactive oxygen species. Overexpression of GPX also inhibited degradation of the inhibitory subunit a of nuclear factor-kB. These results suggest that hydrogen peroxide or other hydroperoxides appear to be key reactants in the tumor suppression by MnSOD overexpression, and growth inhibition correlates with the intracellular redox status. This work suggests that manipulations that inhibit peroxide removal should enhance the tumor suppressive effect of MnSOD overexpression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase.

Manganese-containing superoxide dismutase (MnSOD) is an essential primary antioxidant enzyme that converts superoxide radical to hydrogen peroxide and molecular oxygen within the mitochondrial matrix. Cytosolic glutathione peroxidase (GPX) converts hydrogen peroxide into water. MnSOD is reduced in a variety of tumor types and has been proposed to be a new kind of tumor suppressor gene, but the ...

متن کامل

Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth.

Copper zinc superoxide dismutase (CuZnSOD) is an essential primary antioxidant enzyme that converts superoxide radical to hydrogen peroxide and molecular oxygen in the cytoplasm. Cytosolic glutathione peroxidase (GPx) converts hydrogen peroxide into water. The overall goal of the present study was to explore the possible role of the antioxidant enzyme CuZnSOD in expression of the malignant phen...

متن کامل

Antioxidant enzyme levels in cancer.

Normal cells are protected by antioxidant enzymes from the toxic effects of high concentrations of reactive oxygen species generated during cellular metabolism. Even though cancer cells generate reactive oxygen species, it has been demonstrated biochemically that antioxidant enzyme levels are low in most animal and human cancers. However, a few cancer types have been found to have elevated leve...

متن کامل

Growth of Pancreatic Adenocarcinoma The Role of Manganese Superoxide Dismutase in the Updated Version

Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell proliferation. Cells contain antioxidant enzymes to regulate steady state levels of ROS produced by products of metabolism. The aims of our study were to determine ant...

متن کامل

The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma.

Chronic pancreatitis, K-ras oncogene mutations, and the subsequent generation of reactive oxygen species (ROS) appear to be linked to pancreatic cancer. ROS have also been suggested to be mitogenic and capable of stimulating cell proliferation. Cells contain antioxidant enzymes to regulate steady state levels of ROS produced by products of metabolism. The aims of our study were to determine ant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000