Optimal control law for classical and multiconjugate adaptive optics.

نویسندگان

  • Brice Le Roux
  • Jean-Marc Conan
  • Caroline Kulcsár
  • Henri-François Raynaud
  • Laurent M Mugnier
  • Thierry Fusco
چکیده

Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased sky coverage with optimal correction of tilt and tilt-anisoplanatism modes in laser-guide-star multiconjugate adaptive optics.

Laser-guide-star multiconjugate adaptive optics (MCAO) systems require natural guide stars (NGS) to measure tilt and tilt-anisoplanatism modes. Making optimal use of the limited number of photons coming from such, generally dim, sources is mandatory to obtain reasonable sky coverage, i.e., the probability of finding asterisms amenable to NGS wavefront (WF) sensing for a predefined WF error budg...

متن کامل

Simulation model based approach for long exposure atmospheric point spread function reconstruction for laser guide star multiconjugate adaptive optics.

This paper discusses an innovative simulation model based approach for long exposure atmospheric point spread function (PSF) reconstruction in the context of laser guide star (LGS) multiconjugate adaptive optics (MCAO). The approach is inspired from the classical scheme developed by Véran et al. [J. Opt. Soc. Am. A14, 3057 (1997)] and Flicker et al. [Astron. Astrophys.400, 1199 (2003)] and reco...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Analysis of the improvement in sky coverage for multiconjugate adaptive optics systems obtained using minimum variance split tomography.

The scientific utility of laser-guide-star-based multiconjugate adaptive optics systems depends upon high sky coverage. Previously we reported a high-fidelity sky coverage analysis of an ad hoc split tomography control algorithm and a postprocessing simulation technique. In this paper, we present the performance of a newer minimum variance split tomography algorithm, and we show that it brings ...

متن کامل

Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2004