Multiple response learning automata
نویسنده
چکیده
Learning Automata update their action probabilites on the basis of the response they get from a random environment. They use a reward adaptation rate for a favorable environment's response and a penalty adaptation rate for an unfavorable environment's response. In this correspondence, we introduce Multiple Response learning automata by explicitly classifying the environment responses into a reward (favorable) set and a penalty (unfavorable) set. We derive a new reinforcement scheme which uses different reward or penalty rates for the corresponding reward (favorable) or penalty (unfavorable) responses. Well known learning automata, such as the L(R-P);L(R-I); L(R-eP) are special cases of these Multiple Response learning automata. These automata are feasible at each step, nonabsorbing (when the penalty functions are positive), and strictly distance diminishing. Finally, we provide conditions in order that they are ergodic and expedient.
منابع مشابه
Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملImproved Frog Leaping Algorithm Using Cellular Learning Automata
In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...
متن کاملImproving the Speed of Response of Learning Algorithms Using Multiple Models
This is the first of a series of papers that the authors propose to write on the subject of improving the speed of response of learning systems using multiple models. During the past two decades, the second author has worked on numerous methods for improving the stability, robustness, and performance of adaptive systems using multiple models and the other authors have collaborated with him on s...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
دوره 26 1 شماره
صفحات -
تاریخ انتشار 1996