Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 gene.
نویسندگان
چکیده
The complement system is one of the important mediators of renal ischemia-reperfusion injury (IRI). We hypothesized that efficient silencing of C3, which is the central component on which all complement activation pathways converge, could be achieved using small interfering RNA (siRNA), and that this would result in overall inhibition of complement activation, thereby preventing IRI in kidneys. A series of experiments was conducted, using a mouse model of IRI and vector-delivered C3-specific siRNA. We demonstrated the following: (1) renal expression of C3 increases as a result of IRI; (2) by incorporation into a pRNAT U6.1 vector, siRNA can be delivered to renal cells in vivo; (3) systemically delivered siRNA is effective in reducing the expression of C3 in an experimentally induced mouse kidney model of IRI; (4) similarly, siRNA reduces complement-mediated IRI-related effects, both in terms of renal injury (as evidenced by renal function and histopathology examination) and mouse mortality and (5) silencing the production of C3 diminishes in vivo production of TNF-alpha. This study implies that siRNA represents a novel approach to preventing IRI in kidneys and might be used in a variety of clinical settings, including transplantation and acute tubular necrosis.
منابع مشابه
Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury.
Fas-mediated apoptosis has been suggested to contribute to tubular cell death after renal ischemia-reperfusion injury. Here we investigate whether small interfering RNA (siRNA) duplexes targeting Fas protect mice from acute renal failure after clamping of the renal artery. Renal ischemia-reperfusion injury was induced by clamping the renal vein and artery for 15 or 35 min. Mice were treated bef...
متن کاملTissue-specific deletion of Crry from mouse proximal tubular epithelial cells increases susceptibility to renal ischemia reperfusion injury
The murine cell surface protein Crry (complement receptor 1-related protein/gene y) is a key complement regulator with similar activities to human membrane cofactor protein (MCP) and decay-accelerating factor. MCP has a critical role in preventing complement-mediated tissue injury and its mutation has been implicated in several human kidney diseases. The study of Crry in mice has relevance to u...
متن کاملSilencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury.
p53, a pivotal protein in the apoptotic pathway, has been identified as a mediator of transcriptional responses to ischemia-reperfusion (IR) injury. The characteristics and functional significance of the p53 response in vivo are largely unknown in IR-induced kidney injury. Therapeutic opportunities of delivering small interfering RNA (siRNA) via venous injection have gained recognition; however...
متن کاملNovel small interfering RNA-containing solution protecting donor organs in heart transplantation.
BACKGROUND Ischemia/reperfusion injury is a major factor in graft quality and subsequent function in the transplantation setting. We hypothesize that the process of RNA interference may be used to "engineer" a graft to suppress expression of genes associated with inflammation, apoptosis, and complement, which are believed to cause ischemia/reperfusion injury. Such manipulation of pathological g...
متن کاملGene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury.
Ischemia/reperfusion (I/R) injury in organ transplantation significantly contributes to graft failure and is untreatable using current approaches. I/R injury is associated with activation of the complement system, leading to the release of anaphylatoxins, such as C5a, and the formation of the membrane attack complex. Here, we report a novel therapy for kidney I/R injury through silencing of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2006