Spectroscopic polarization-sensitive full-field optical coherence microscopy

نویسنده

  • Arnaud Dubois
چکیده

Full-field optical coherence tomography (FF-OCT) is a recent optical imaging technology based on low-coherence interference microscopy for imaging of semi-transparent samples with ~1 μm spatial resolution. FF-OCT produces en-face tomographic images obtained by arithmetic combination of interferometric images acquired by an array camera. In this paper, we demonstrate a unique multimodal FF-OCT system, capable of measuring simultaneously the intensity, the power spectrum and the phase-retardation of light backscattered by the sample being imaged. Compared to conventional FF-OCT, this multimodal system provides enhanced imaging contrasts at the price of a moderate increase in experimental complexity and cost. ©2012 Optical Society of America OCIS codes: (180.1655) Coherence tomography; (180.3170) Interference microscopy; (170.4500) Optical coherence tomography; (120.6200) Spectrometers and spectroscopic instrumentation; (120.5410) Polarimetry. References and links 1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). 2. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996). 3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993). 4. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). 5. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003). 6. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13(3), 1015–1024 (2005). 7. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995). 8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997). 9. J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997). 10. C. K. Hitzenberger, E. Götzinger, M. Sticker, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001). 11. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarization sensitive optical coherence tomography for strain mapping in materials,” Opt. Express 14(13), 5945–5953 (2006). 12. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000). 13. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000). #159710 $15.00 USD Received 31 Jan 2012; revised 30 Mar 2012; accepted 1 Apr 2012; published 17 Apr 2012 (C) 2012 OSA 23 April 2012 / Vol. 20, No. 9 / OPTICS EXPRESS 9962 14. D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express 12(22), 5487–5501 (2004). 15. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27(19), 1702–1704 (2002). 16. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiberbased multi-functional spectral-domain optical coherence tomography at 1.3 μm,” Opt. Express 13(11), 3931– 3944 (2005). 17. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002). 18. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002). 19. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41(31), 6637–6645 (2002). 20. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28(10), 816–818 (2003). 21. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using fullfield optical coherence tomography,” Phys. Med. Biol. 49(7), 1227–1234 (2004). 22. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14(19), 8675–8684 (2006). 23. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271(2), 573–580 (2007). 24. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and A. C. Boccara, “In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005). 25. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480–1488 (2010). 26. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2882 (2004). 27. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006). 28. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun. 266(2), 738–743 (2006). 29. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express 16(24), 19434–19446 (2008). 30. J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarizationsensitive optical coherence tomography I. Theory,” Appl. Opt. 42(19), 3800–3810 (2003). 31. J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarizationsensitive optical coherence tomography II. Instrument and results,” Appl. Opt. 42(19), 3811–3818 (2003). 32. G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett. 32(14), 2058–2060 (2007). 33. A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008). 34. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett. 34(10), 1576–1578 (2009). 35. M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun. 237(4-6), 275–283 (2004). 36. I. Abdulhalim, R. Friedman, L. Liraz, and R. Dadon, “Full-field frequency domain common path optical coherence tomography with annular aperture,” Proc. of SPIE-OSA Biomedical Optics, SPIE 6627, 662719 (2007). 37. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992). 38. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). 39. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). 40. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “Invivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999). 41. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003). #159710 $15.00 USD Received 31 Jan 2012; revised 30 Mar 2012; accepted 1 Apr 2012; published 17 Apr 2012 (C) 2012 OSA 23 April 2012 / Vol. 20, No. 9 / OPTICS EXPRESS 9963

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic ultrahigh-resolution full-field optical coherence microscopy.

We have developed a full-field optical coherence microscopy system providing intensity-based tomographic images and spectroscopic information with ultrahigh spatial resolution. Local measurements of the backscattered light spectrum center of mass are achieved through short-time Fourier analysis of a stack of en face interferometric images acquired with a Linnik-type microscope. Using a halogen ...

متن کامل

Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. II. Instrument and results.

We describe an instrument for measuring the magnitude of birefringence of tomographic images and the principal directions of axes that use thermal-light polarization-sensitive optical coherence tomography. The instrument permits full-field measurements with an axial resolution of 1.5 microm and a transverse resolution limited by diffraction. We obtained a sensitivity of 84 dB, limited by shot n...

متن کامل

Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. I. Theory.

A method for measuring birefringence by use of thermal-light polarization-sensitive optical coherence tomography is presented. The use of thermal light brings to polarization-sensitive optical coherence tomography a resolution in the micrometer range in three dimensions. The instrument is based on a Linnik interference microscope and makes use of achromatic quarter-wave plates. A mathematical r...

متن کامل

Polarization-sensitive full-field optical coherence tomography.

We present a polarization-sensitive full-field optical coherence tomography system that can produce high-resolution images of the linear retardance and reflectivity properties of biological media. En face images can be delivered at a frame rate of 3.5 Hz by combination of interferometric images acquired by two CCD cameras in an interference microscope illuminated with a tungsten halogen lamp. I...

متن کامل

Advances in optical coherence tomography imaging for dermatology.

Optical coherence tomography (OCT) is a non-invasive imaging technique, which has previously demonstrated potential for use in dermatology. The purpose of this study is to demonstrate how improvements in image quality, speed, and functionality enable qualitative and quantitative information to be obtained from in vivo human skin. We developed a portable fiber-optic based OCT imaging device that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017