Discovering diverse association rules from multidimensional schema
نویسندگان
چکیده
The integration of data mining techniques with data warehousing is gaining popularity due to the fact that both disciplines complement each other in extracting knowledge from large datasets. However, the majority of approaches focus on applying data mining as a front end technology to mine data warehouses. Surprisingly, little progress has been made in incorporating mining techniques in the design of data warehouses. While methods such as data clustering applied on multidimensional data have been shown to enhance the knowledge discovery process, a number of fundamental issues remain unresolved with respect to the design of multidimensional schema. These relate to automated support for the selection of informative dimension and fact variables in high dimensional and data intensive environments, an activity which may challenge the capabilities of human designers on account of the sheer scale of data volume and variables involved. In this research, we propose a methodology that selects a subset of informative dimension and fact variables from an initial set of candidates. Our experimental results conducted on three real world datasets taken from the UCI machine learning repository show that the knowledge discovered from the schema that we generated was more diverse and informative than the standard approach of mining the original data without the use of our multidimensional structure imposed on it.
منابع مشابه
Developing a Novel Multidimensional Multigranularity Data Mining Approach for Discovering Association Rules
Data Mining is one of the most significant tools for discovering association patterns that are useful for many knowledge domains. Yet, there are some drawbacks in existing mining techniques. Three main weaknesses of current data-mining techniques are: 1) re-scanning of the entire database must be done whenever new attributes are added. 2) An association rule may be true on a certain granularity...
متن کاملModified Approach for Classifying Multi-Dimensional Data-Cube Through Association Rule Mining for Granting Loans in Bank
In this paper, modified Approach for classifying Multi-dimensional data cube is constructed. It explores data cubes in large Multi-Dimensional Schema. Numerical and Nominal attributes are categorized based on Principal Component Analysis. Semantic relationships are identified by applying Multidimensional scaling. Additionally, AR is integrated for finding the inserting measures. Many algorithms...
متن کاملTechniques of OLAP and Association Rule Mining
OLAP is a multidimensional view of complete data in the data store used for multidimensional analysis. It is the most practical approach used in the data warehouse for analytical process of large data and provides tools for analytical and statistical analysis of data. While Association rule learning is a popular and researched method for discovering interesting relations between variables in ve...
متن کاملEvolution of Learning Rules for Hard Learning Problems
Recent experiments with a genetic-based encoding schema are presented as a potentially useful tool in discovering learning rules by means of evolution. The representation strategy is similar to that used in genetic programming(GP) but it employs only a xed set of functions to solve a variety of problems. In this paper, three Monk's and parity problems are tested. The results indicate the useful...
متن کاملAn evolutionary algorithm to discover quantitative association rules in multidimensional time series
An evolutionary approach for finding existing relationships among several variables of a multidimensional time series is presented in this work. The proposed model to discover these relationships is based on quantitative association rules. This algorithm, called QARGA (Quantitative Association Rules by Genetic Algorithm), uses a particular codification of the individuals that allows solving two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013