Algorithms for Nonnegative Matrix Factorization with the β-Divergence

نویسندگان

  • Cédric Févotte
  • Jérôme Idier
چکیده

This letter describes algorithms for nonnegative matrix factorization (NMF) with the β-divergence (β-NMF). The β-divergence is a family of cost functions parameterized by a single shape parameter β that takes the Euclidean distance, the Kullback-Leibler divergence, and the Itakura-Saito divergence as special cases (β = 2, 1, 0 respectively). The proposed algorithms are based on a surrogate auxiliary function (a local majorization of the criterion function). We first describe a majorizationminimization algorithm that leads to multiplicative updates, which differ from standard heuristic multiplicative updates by a β-dependent power exponent. The monotonicity of the heuristic algorithm can, however, be proven forβ ∈ (0, 1) using the proposed auxiliary function. Then we introduce the concept of the majorization-equalization (ME) algorithm, which produces updates that move along constant level sets of the auxiliary function and lead to larger steps than MM. Simulations on synthetic and real data illustrate the faster convergence of the ME approach. The letter also describes how the proposed algorithms can be adapted to two common variants of NMF: penalized NMF (when a penalty function of the factors is added to the criterion function) and convex NMF (when the dictionary is assumed to belong to a known subspace).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Convergence-guaranteed Multiplicative Algorithms for Nonnegative Matrix Factorizationwith Β-divergence

This paper presents a new multiplicative algorithm for nonnegative matrix factorization with β-divergence. The derived update rules have a similar form to those of the conventional multiplicative algorithm, only differing through the presence of an exponent term depending on β. The convergence is theoretically proven for any real-valued β based on the auxiliary function method. The convergence ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Algorithms for nonnegative matrix factorization with the beta-divergence

This paper describes algorithms for nonnegative matrix factorization (NMF) with the β-divergence (β-NMF). The β-divergence is a family of cost functions parametrized by a single shape parameter β that takes the Euclidean distance, the Kullback-Leibler divergence and the Itakura-Saito divergence as special cases (β = 2, 1, 0 respectively). The proposed algorithms are based on a surrogate auxilia...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Computation

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2011