A negative fold test on the Lorrain Formation of the Huronian Supergroup: Uncertainty on the paleolatitude of the Paleoproterozoic Gowganda glaciation and implications for the great oxygenation event

نویسندگان

  • Isaac A. Hilburn
  • Joseph L. Kirschvink
  • Eiichi Tajika
  • Ryuji Tada
  • Yozo Hamano
  • Shinji Yamamoto
چکیده

Previous paleomagnetic studies of the glaciogenic Gowganda and Lorrain formations have identified several low-inclination magnetic components of high thermal stability, which suggest low-latitude glaciation during deposition of the Huronian Supergroup, Canada. While extraordinary claims demand extraordinary proof, prior authors have been unable to support their interpretations of these components conclusively with any of the classic field stability tests (e.g., conglomerate, fold, and baked contact) capable of demonstrating that the magnetization was acquired at or soon enough after the time of deposition to be used to constrain the paleolatitude of the Gowganda or Lorrain formations. We report here the results of a fold test from the bpurple siltstoneQ member of the Lorrain Formation near the town of Desbarats, Ontario, which indicate that none of the reported components dates to the time of deposition. Hence, the paleolatitude of the Gowganda glaciation is uncertain. Comparison of the lithostratigraphic, paleomagnetic, and radiometric constraints on the Huronian sequence and the Transvaal Supergroup of Southern Africa implies that the one verified low-latitude Paleoproterozoic glacial event (the Makganyene glaciation, Transvaal Supergroup, South Africa) is younger than the three glacial units of Canada. With this correlation, the physical rock record indicates that the dgreat oxygenation eventT began in the time interval between the Gowganda and Makganyene glaciations. These data are consistent with the sudden evolution of oxygenic photosynthesis destroying a methane greenhouse and thereby triggering the first Snowball Earth event in Earth history. D 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nd and Pb isotopic evidence for provenance and post-depositional alteration of the Paleoproterozoic Huronian Supergroup, Canada

Neodymium model ages for fine-grained formations of the Paleoproterozoic Huronian Supergroup (McKim, Pecors, Gowganda, Gordon Lake) range from 3.00 to 2.55 Ga and indicate a provenance dominated by the Late Archean Superior Province to the north and west. The stratigraphically highest unit (Gordon Lake Formation) has a distinctive Nd-isotopic composition, with TDM being 100-400 Ma younger than ...

متن کامل

Manganese enrichment in the Gowganda Formation of the Huronian Supergroup: A highly oxidizing shallow-marine environment after the last Huronian glaciation

a Dept. of Complexity Sci. & Engr., Univ. of Tokyo, Kashiwa, Chiba 277–8561, Japan b Dept. of Earth & Planetary Sci., Univ. of Tokyo, Bunkyo, Tokyo 113-0033, Japan c Planetary Exploration Res. Center, Chiba Inst. of Tech., Tsudanuma, Chiba 275–0016, Japan d Dept. of Earth Science & Astronomy, Univ. of Tokyo, Meguro, Tokyo 153–8902, Japan e Division of Geological & Planetary Sci., California Ins...

متن کامل

Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago

Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE an...

متن کامل

The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis.

Although biomarker, trace element, and isotopic evidence have been used to claim that oxygenic photosynthesis evolved by 2.8 giga-annum before present (Ga) and perhaps as early as 3.7 Ga, a skeptical examination raises considerable doubt about the presence of oxygen producers at these times. Geological features suggestive of oxygen, such as red beds, lateritic paleosols, and the return of sedim...

متن کامل

Anomalous negative excursion of carbon isotope in organic carbon after the last Paleoproterozoic glaciation in North America

[1] Early Paleoproterozoic time (2.5–2.0 Ga) spanned a critical phase in Earth’s history, characterized by repeated glaciations and an increase in atmospheric oxygen (the Great Oxidation Event (GOE)). Following the last and most intense glaciation of this period, marine carbonates record a large positive excursion of dC value (termed the “Lomagundi event”) between about 2.2 and 2.1 Ga coincidin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005