Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide: An incubation study

نویسنده

  • Rupali Datta
چکیده

The potential for human exposure to arsenic (As), a group A carcinogen, has increased tremendously because of the encroachment of suburban areas into former agricultural lands, where arsenical pesticides were used extensively prior to the 1990s. Many baseline risk assessments of As-enriched sites assume that all (100%) As present in the soil is bioavailable because of the high expenses and logistical difficulties associated with conducting site-specific in-vivo studies to measure bioavailable As fractions. This assumption seriously overestimates the actual risk because various geochemical forms of As are insoluble in human gastric/intestinal juices and are not likely to be bioavailable. A laboratory incubation study was conducted to estimate bioavailable As as a function of soil properties. Three different soil types were chosen based on their potential differences with respect to As reactivity: an acid sand with minimal As retention capacity, a sandy loam with relatively high concentration of Fe/Al oxides, and an organic (muck) soil with high Fe/Al, Ca/Mg content with potential for higher As retention capacity. Our results show that soil properties had a marked impact on geochemical speciation of As. Hysteritic adsorption of As onto Fe/Al oxides significantly decreased bioavailability of As in both Millhopper and Pahokee Muck soils, which have high concentrations of Fe and Al. High concentration of organic matter in Pahokee Muck soil solubilized As, resulting in higher bioavailability in Pahokee Muck soil compared to the Millhopper soil, although Pahokee Muck soil has higher concentrations of Fe and Al. The soils varied significantly in terms of soil speciation and bioavailability of As, indicating significant effect of soil properties on As biogeochemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains.

AIMS To analyse the arsenic-resistant bacterial communities of two agricultural soils of Bangladesh, to isolate arsenic-resistant bacteria, to study their potential role in arsenic transformation and to investigate the genetic determinants for arsenic resistance among the isolates. METHODS AND RESULTS Enrichment cultures were performed in a minimal medium in the presence of As(III) and As(V) ...

متن کامل

Arsenic speciation and distribution in an arsenic hyperaccumulating plant.

Arsenic-contaminated soil is one of the major arsenic sources for drinking water. Phytoremediation, an emerging, plant-based technology for the removal of toxic contaminants from soil and water, has been receiving renewed attention. Although a number of plants have been identified as hyperaccumulators for the phytoextraction of a variety of metals, and some have been used in field applications,...

متن کامل

Uptake kinetics of arsenic species in rice plants.

Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was...

متن کامل

arrA is a reliable marker for As(V) respiration.

Arsenate [As(V)]-respiring bacteria affect the speciation and mobilization of arsenic in the environment. This can lead to arsenic contamination of drinking water supplies and deleterious consequences for human health. Using molecular genetics, we show that the functional gene for As(V) respiration, arrA, is highly conserved; that it is required for As(V) reduction to arsenite when arsenic is s...

متن کامل

Arsenite and Arsenate Removal from Contaminated Groundwater by Nanoscale Iron–Manganese Binary Oxides: Column Studies

Fixed-bed sorption process can be very effective at removing arsenic from contaminated groundwater. In this study, a continuous operation was demonstrated for the removal of both arsenite [As(III)] and arsenate [As(V)] from aqueous media in a column packed with nanoscale iron–manganese binary oxides (NIM). Treatment performance of the sorbent was quantified by upflow column experiments at diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004