Detecting annual and seasonal changes in a sagebrush ecosystem with remote sensing-derived continuous fields

نویسندگان

  • Collin G. Homer
  • Debra K. Meyer
  • Cameron L. Aldridge
  • Spencer J. Schell
چکیده

Climate change may represent the greatest future risk to the sagebrush ecosystem. Improved ways to quantify and monitor gradual change resulting from climate influences in this ecosystem are vital to its future management. For this research, the change over time of five continuous field cover components including bare ground, herbaceous, litter, sagebrush, and shrub were measured on the ground and by satellite across six seasons and four years. Ground-measured litter and herbaceous cover exhibited the highest variation annually and herbaceous cover the highest variation seasonally. Correlation of ground measurements to corresponding remote-sensing predictions indicated that annual predictions tracked ground measurements more closely than seasonal ones, and QuickBird predictions tracked ground measurements more closely than Landsat predictions. When annual linear slope values from ground plots and sensor predictions were correlated by component, the direction of ground-measured change was tracked better with QuickBird components than with Landsat components. Component predictions were correlated to annual and seasonal DAYMET precipitation. QuickBird components on average had the best response to precipitation patterns, followed by Landsat components. Overall, these results demonstrate the ability of sagebrush ecosystem components as predicted by regression trees to incrementally measure changing components of a sagebrush ecosystem. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073508]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Land Cover and Regional Climate Variations on Long-Term Spatiotemporal Changes in Sagebrush Ecosystems

This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes invo...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring

Sagebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilita...

متن کامل

Effects of the land use change on ecosystem service value

The impacts of land utilization change on the ecosystem service values in Daqing during 1995 to 2015 were analyzed based on unit area ecosystem service value of Chinese territorial ecosystem from Mr. Xie Gaodi and ecosystem service value calculation formula from Costanza. Results showed that the ecosystem service value of Daqing decreased from US $4343.1559m in 1995 to US $3824.327m in 2015, wi...

متن کامل

Estimation of Carbon Sequestration by Combining Remote Sensing and Net Ecosystem Exchange Data for Northern Mixed-Grass Prairie and Sagebrush–Steppe Ecosystems

WILLIAM A. REINERS Department of Botany University of Wyoming PO Box 3165 Laramie, Wyoming 82071-3165, USA ABSTRACT / Carbon sequestration was estimated a northern mixed-grass prairie site and a sagebrush–steppe site in southeastern Wyoming using an approach that integrates remote sensing, CO2 flux measurements, and meteorological data. Net ecosystem exchange (NEE) of CO2 was measured using air...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013