Mutational and structural analyses of the hinge region of membrane type 1-matrix metalloproteinase and enzyme processing.

نویسندگان

  • Pamela Osenkowski
  • Samy O Meroueh
  • Dumitru Pavel
  • Shahriar Mobashery
  • Rafael Fridman
چکیده

Membrane type 1 (MT1)-matrix metalloproteinase (MMP) is a major mediator of collagen degradation in the pericellular space in both physiological and pathological conditions. Previous evidence has shown that on the cell surface, active MT1-MMP undergoes autocatalytic processing to a major membrane-tethered 44-kDa product lacking the catalytic domain and displaying Gly285 at its N terminus, which is at the beginning of the hinge domain. However, the importance of this site and the hinge region in MT1-MMP processing is unknown. In the current study, we generated mutations and deletions in the hinge of MT1-MMP and followed their effect on processing. These studies established Gly284-Gly285 as the main cleavage site involved in the formation of the 44-kDa species. However, alterations at this site did not prevent processing. Instead, they forced downstream cleavages within the stretch of residues flanked by Gln296 and Ser304 in the hinge region, as determined by the processing profile of various hinge deletion mutants. Also, replacement of the hinge of MT1-MMP with the longer MT3-MMP hinge did not prevent processing of MT1-MMP. Molecular dynamic studies using a computational model of MT1-MMP revealed that the hinge region is a highly motile element that undergoes significant motion in the highly exposed loop formed by Pro295-Arg302 consistent with being a prime target for proteolysis, in agreement with the mutational data. These studies suggest that the hinge of MT1-MMP evolved to facilitate processing, a promiscuous but compulsory event in the destiny of MT1-MMP, which may play a key role in the control of pericellular proteolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinc...

متن کامل

Effect of Foretinib on Matrix Metalloproteinase-2 (MMP2) Expression in Glioblastoma

Background: The most malignant form of infiltrating astrocytoma, glioblastoma multiforme (GBM), is one of the most aggressive human cancers. Foretinib diminished GBM cell invasion by downregulating the expression of matrix metalloproteinase 2 (MMP2). The study aimed to examine the anti-tumor activity of foretinib and to test its effect on MMP2 expression in T98 cells. Materials and methods: T9...

متن کامل

O-glycosylation regulates autolysis of cellular membrane type-1 matrix metalloproteinase (MT1-MMP).

MT1-MMP is a key enzyme in cancer cell invasion and metastasis. The activity of cellular MT1-MMP is regulated by furin-like proprotein convertases, TIMPs, shedding, autoproteolysis, dimerization, exocytosis, endocytosis, and recycling. Our data demonstrate that, in addition to these already known mechanisms, MT1-MMP is regulated by O-glycosylation of its hinge region. Insignificant autolytic de...

متن کامل

Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases.

Membrane type-1 matrix metalloproteinase (MT1-MMP) is the prototypical member of a subgroup of membrane-anchored proteinases that belong to the matrix metalloproteinase family. Although synthesized as a zymogen, MT1-MMP plays an essential role in extracellular matrix remodeling after an undefined process that unmasks its catalytic domain. We now report the existence of a proprotein convertase-M...

متن کامل

Impact of the Synchronization of portulaca oleracea and Aerobic Training on Levels of MMP2 and MMP9 and TIMP1 in Diabetic Women Type II

Background: Diabetes has the most important role in development of tissue damage, and by affecting intercellular matrices, may lead to structural and functional changes that ultimately cause failure of related tissue or organ. Exercise and herbal medicine can be effective in reducing organ failure. This study aims to assess the effect of aerobic training combined with consumption of portulaca o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 28  شماره 

صفحات  -

تاریخ انتشار 2005