Maximum embedding of an H(v-w, 3, 1) into a TS(v, λ)
نویسندگان
چکیده
Let H be a subgraph of a graph G, and let V ⊆ X. We say that an H-design (V, C) of order u and index μ is embedded into a G-design (X,B) of order v and index λ, μ ≤ λ, if there is an injective mapping f : C → B such that B is a subgraph of f(B) for every B ∈ C. The mapping f is called the embedding of (V, C) into (X,B). For every pair of positive integers v, λ, we determine the minimum value of w such that there exists a triple system TS(v, λ) which embeds a handcuffed path design H(v − w, 3, 1).
منابع مشابه
Faithful Enclosing of Triple Systems: Doubling the Index
A triple system of order v ≥ 3 and index λ is faithfully enclosed in a triple system of order w ≥ v and index μ ≥ λ when the triples induced on some v elements of the triple system of order w are precisely those from the triple system of order v. When λ = μ, faithful enclosing is embedding; when λ = 0, faithful enclosing asks for an independent set of size v in a triple system of order w. When ...
متن کاملEmbedding DTS(v) into DB(4, 1;w)
Let (V,B) be a DB(k, λ; v) and (W, C) be a DB(k′, λ′; v′). If V ⊂ W and C|V = B, i.e. B = {B : B ∈ C, B ⊂ V }, we call (V,B) is embedded in (W, C). In this paper, we estimate the embedding spectrum of DTS(v) when k = 3, k′ = 4, λ = λ′ = 1. We also determine the embedding spectrum of DTS(v) with small orders.
متن کاملMinimum embedding of a P4-design into a balanced incomplete block design of index lambda
Let H be a subgraph of G. An H-design (V, C) of order v and index μ is embedded into a G-design (X,B) of order v + w and index λ if μ ≤ λ, V ⊆ X and there is an injective mapping f : C → B such that B is subgraph of f (B) for every B ∈ C. For every pair of positive integers v, λ, (except when λ = 3 and v = 30, 34, 42, 46, 54, 58, 66 or λ = 5 and v = 19) we determine the minimum value of w such ...
متن کاملAnd Ckm Unitarity
The Cabibbo-Kobayashi-Maskawa (CKM) [1,2] three-generation quark mixing matrix written in terms of the Wolfen-stein parameters (λ, A, ρ, η) [3] nicely illustrates the orthonor-mality constraint of unitarity and central role played by λ. V CKM = ⎛ ⎝ V ud V us V ub V cd V cs V cb V td V ts V tb ⎞ ⎠ = ⎛ ⎝ 1 − λ 2 /2 λ Aλ 3 (ρ − iη) −λ 1 − λ 2 /2 Aλ 2 Aλ 3 (1 − ρ − iη) −Aλ 2 1 ⎞ ⎠ +O(λ 4). (1) That...
متن کاملResolving Triple Systems into Regular Configurations
A λ − Triple System(v), or a λ–TS(V,B), is a pair (V, B) where V is a set and B is a subset of the 3-subsets of V so that every pair is in exactly λ elements of B. A regular configuration on p points with regularity ρ on l blocks is a pair (P,L) where L is a collection of 3-subsets of a (usually small) set P so that every p in P is in exactly ρ elements of L, and |L| = l. The Pasch configuratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 46 شماره
صفحات -
تاریخ انتشار 2010