Deflated Restarting for Matrix Functions
نویسندگان
چکیده
We investigate an acceleration technique for restarted Krylov subspace methods for computing the action of a function of a large sparse matrix on a vector. Its effect is to ultimately deflate a specific invariant subspace of the matrix which most impedes the convergence of the restarted approximation process. An approximation to the subspace to be deflated is successively refined in the course of the underlying restarted Arnoldi process by extracting Ritz vectors and using those closest to the spectral region of interest as exact shifts. The approximation is constructed with the help of a generalization of Krylov decompositions to linearly dependent vectors. A description of the restarted process as a successive interpolation scheme at Ritz values is given in which the exact shifts are replaced with improved approximations of eigenvalues in each restart cycle. Numerical experiments demonstrate the efficacy of the approach.
منابع مشابه
A Flexible Generalized Conjugate Residual Method with Inner Orthogonalization and Deflated Restarting
This work is concerned with the development and study of a minimum residual norm subspace method based on the generalized conjugate residual method with inner orthogonalization (GCRO) method that allows flexible preconditioning and deflated restarting for the solution of nonsymmetric or non-Hermitian linear systems. First we recall the main features of flexible generalized minimum residual with...
متن کاملA study on block flexible iterative solvers with applications to Earth imaging problem in geophysics
This work is concerned with the development and study of a minimum residual norm subspace method based on the Generalized Conjugate Residual method with inner Orthogonalization (GCRO) method that allows flexible preconditioning and deflated restarting for the solution of non-symmetric or non-Hermitian linear systems. First we recall the main features of Flexible Generalized Minimum Residual wit...
متن کاملDeflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides
A deflated restarted Lanczos algorithm is given for both solving symmetric linear equations and computing eigenvalues and eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Meanwhile, the deflating from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. Some reorthogonalization is ne...
متن کاملGMRES with Deflated Restarting
A modification is given of the GMRES iterative method for nonsymmetric systems of linear equations. The new method deflates eigenvalues using Wu and Simon’s thick restarting approach. It has the efficiency of implicit restarting, but is simpler and does not have the same numerical concerns. The deflation of small eigenvalues can greatly improve the convergence of restarted GMRES. Also, it is de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 32 شماره
صفحات -
تاریخ انتشار 2011