Intracellular Trafficking Pathways of Edwardsiella tarda: From Clathrin- and Caveolin-Mediated Endocytosis to Endosome and Lysosome

نویسندگان

  • Zhi-hai Sui
  • Haijiao Xu
  • Hongda Wang
  • Shuai Jiang
  • Heng Chi
  • Li Sun
چکیده

Edwardsiella tarda is a Gram-negative bacterium that can infect a broad range of hosts including humans and fish. Accumulating evidences have indicated that E. tarda is able to survive and replicate in host phagocytes. However, the pathways involved in the intracellular infection of E. tarda are unclear. In this study, we examined the entry and endocytic trafficking of E. tarda in the mouse macrophage cell line RAW264.7. We found that E. tarda entered RAW264.7 and multiplied intracellularly in a robust manner. Cellular invasion of E. tarda was significantly impaired by inhibition of clathrin- and caveolin-mediated endocytic pathways and by inhibition of endosome acidification, but not by inhibition of macropinocytosis. Consistently, RAW264.7-infecting E. tarda was co-localized with clathrin, caveolin, and hallmarks of early and late endosomes, and intracellular E. tarda was found to exist in acid organelles. In addition, E. tarda in RAW264.7 was associated with actin and microtubule, and blocking of the functions of these cytoskeletons by inhibitors significantly decreased E. tarda infection. Furthermore, formaldehyde-killed E. tarda exhibited routes of cellular uptake and intracellular trafficking similar to that of live E. tarda. Together these results provide the first evidence that entry of live E. tarda into macrophages is probably a passive, virulence-independent process of phagocytosis effected by clathrin- and caveolin-mediated endocytosis and cytoskeletons, and that the intracellular traffic of E. tarda involves endosomes and endolysosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Trafficking Network of Protein Nanocapsules: Endocytosis, Exocytosis and Autophagy

The inner membrane vesicle system is a complex transport system that includes endocytosis, exocytosis and autophagy. However, the details of the intracellular trafficking pathway of nanoparticles in cells have been poorly investigated. Here, we investigate in detail the intracellular trafficking pathway of protein nanocapsules using more than 30 Rab proteins as markers of multiple trafficking v...

متن کامل

Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum.

Internalization of autocrine motility factor (AMF) into the endoplasmic reticulum is sensitive to the cholesterol-extracting reagent methyl-beta-cyclodextrin, inhibited by the dynamin-1 K44A mutant and negatively regulated by caveolin-1. Thus, AMF internalization requires a caveolae-mediated endocytic pathway. Similarly, we show here that endocytosis of cholera toxin (CTX) in NIH-3T3 fibroblast...

متن کامل

Bovine papillomavirus type 1: from clathrin to caveolin.

Viruses may infect cells through clathrin-dependent, caveolin-dependent, or clathrin- and caveolin-independent endocytosis. Bovine papillomavirus type 1 (BPV1) entry into cells has been shown to occur by clathrin-dependent endocytosis, a pathway that involves the formation of clathrin-coated pits and fusion to early endosomes. Recently, it has been demonstrated that the closely related JC virus...

متن کامل

Caveolin 2 regulates endocytosis and trafficking of the M1 muscarinic receptor in MDCK epithelial cells.

Clathrin and caveolins are known for their involvement in the internalization of numerous receptors. Here we show that in polarized epithelial Madin-Darby canine kidney cells, both the clathrin machinery and caveolins are involved in the endocytosis and delivery to the plasma membrane (PM) of the M1 muscarinic acetylcholine receptor (mAChR). We initially localized this receptor to the lateral m...

متن کامل

The adaptor complex AP-2 regulates post-endocytic trafficking through the non-clathrin Arf6-dependent endocytic pathway.

The ADP-ribosylation factor 6 (Arf6) GTPase functions as a key regulator of endocytic trafficking, participating in clathrin-independent endocytosis in most cell types. Unexpectedly, we found that siRNA-mediated depletion of clathrin or of adaptor protein 2 (AP-2)-complex subunits alters trafficking of Arf6 pathway cargo proteins, such as major histocompatibility complex class I (MHCI) and beta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017