Cost analysis for optimum thicknesses and environmental impacts of different insulation materials
نویسنده
چکیده
In this study, the optimum thickness of thermal insulation used to reduce heat gain and losses in buildings is investigated under dynamic thermal conditions by using the climatic conditions of Elazığ, Turkey. Numerical method based on an implicit finite difference procedure which has been previously validated is used to determine yearly cooling and heating transmission loads, yearly averaged time lag and decrement factor under steady periodic conditions. These loads are used as inputs to an economic model for the determination of the optimum insulation thickness. The optimum insulation thicknesses, energy savings and payback periods are calculated by using life-cycle cost analysis over lifetime of 20 years of the building. Results show that the optimum insulation thicknesses vary between 5.4 and 19.2 cm, energy savings vary between 86.26 and 146.05 $/m2, and payback periods vary between 3.56 and 8.85 years for different insulation materials. The environmental impacts of thermal insulation are also investigated. It is seen that by applying optimum insulation thickness in uninsulated wall, yearly fuel consumption and emissions are decreased by 68–89.5% depending on insulation materials. © 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Impacts of Building Insulation on Energy Consumption in Different Climates of Iran: A Cost Analysis
One of the most important energy-saving of building is suitable choice of insulation with regard to the climatic conditions of each region. In this study, the effects of building insulations approved by the Research Center of Way, Housing and Urban Development with regard to the cost of insulation on energy consumption in the region of Yazd, Tehran and Tabriz was evaluated by software Energy Pl...
متن کاملDetermination of Optimum Insulation Thickness for Building Walls in Iran Using Life Cycle Cost Analysis
Air-Conditioning (AC) systems are responsible for a considerable portion of the energy consumption in buildings located in high cooling load requiring regions of Iran. In addition, the heat flow through the buildingschr('39') external walls plays a major role in cooling load estimations for the countrychr('39')s hot regions. Therefore, application of insulation materials in external walls has g...
متن کاملImpact of the insulation materials’ features on the determination of optimum insulation thickness
The optimum thickness of the building envelope insulation materials depends on a large number of parameters. But the optimum thickness is calculated considering only economic arguments. In this paper, life-cycle assessment of the materials used in the building, and specifically the insulation ones, are included in the process to calculate the optimum insulation thickness from both environmental...
متن کاملHeat Transfer, Environmental Benefits, and Social Cost Analysis of Different Insulation Methods by Considering Insulation Disadvantages
In this paper, the thermal performance of four common insulators in two internal and external insulation systems is investigated for the ASHRAE setpoint range by applying detailed numerical simulation and Anti-Insulation phenomenon. Anti-Insulation phenomenon and consequent extra load on the HVAC system can occur following the thermal insulation of a building if proper temperature setpoint is n...
متن کاملParametric Investigation of Optimum Thermal Insulation Thickness for External Walls
Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs), the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focuse...
متن کامل