Microstructural Simulation of Asphalt Materials: Modeling and Experimental Studies
نویسندگان
چکیده
Asphalt concrete is a heterogeneous material composed of aggregates, binder cement, and air voids, and may be described as a cemented particulate system. The load carrying behavior of such a material is strongly related to the local load transfer between aggregate particles, and this is taken as the microstructural response. Simulation of this material behavior was accomplished using a finite element technique, which was constructed to simulate the micromechanical response of the aggregate/binder system. The model incorporated a network of special frame elements with a stiffness matrix developed to predict the load transfer between cemented particles. The stiffness matrix was created from an approximate elasticity solution of the stress and displacement field in a cementation layer between particle pairs. A damage mechanics approach was then incorporated with this solution, and this lead to the construction of a softening model capable of predicting typical global inelastic behaviors found in asphalt materials. This theory was then implemented within the ABAQUS finite element analysis code to conduct simulations of particular laboratory specimens. Experimental verification of the elastic response has included tests on specially prepared cemented particulate systems, which allowed detailed measurement of aggregate displacements and rotations using video imaging and computer analysis. Model simulations compared favorably with these experimental results. Additional simulations including inelastic behavior of laboratory indirect tension tests have been conducted, and while preliminary in nature these results also compared well with experimental data. DOI: 10.1061/~ASCE!0899-1561~2004!16:2~107! CE Database subject headings: Microstructure; Asphalts; Asphaltic concrete; Aggregates; Asphalt cement; Models;
منابع مشابه
Microstructural Analysis and Rheological Modeling of Asphalt Mixtures Containing Recycled Asphalt Materials
The use of recycled materials in pavement construction has seen, over the years, a significant increase closely associated with substantial economic and environmental benefits. During the past decades, many transportation agencies have evaluated the effect of adding Reclaimed Asphalt Pavement (RAP), and, more recently, Recycled Asphalt Shingles (RAS) on the performance of asphalt pavement, whil...
متن کاملParametric Model Study of Microstructure Effects on Damage Behavior of Asphalt Samples
This paper presents a computational modeling study of the microstructural influence on damage behavior of asphalt materials. Computer generated asphalt samples were created for numerical simulation in indirect tension and compression testing geometries. Our previously developed micromechanical finite element model was used in the simulations. This model uses a special purpose finite element tha...
متن کاملMicromechanical Simulation of Asphalt Samples Using a Finite Element Network Model
The micromechanical load transfer and failure of asphalt concrete samples are simulated using a finite element network model. The load carrying behavior of such a material is strongly related to the local load transfer between aggregate particles, and this is taken as the microstructural response. The model incorporates a network of special frame elements with a stiffness matrix developed to pr...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملSimulation of Asphalt Materials Using a Finite Element Micromechanical Model with Damage Mechanics
This work presents a theoretical/numerical study of the micromechanical behavior of asphalt concrete. Asphalt is a heterogeneous material composed of aggregates, binder cement and air voids. The load carrying behavior of such a material is strongly related to the local load transfer between aggregate particles, and this is taken as the microstructural response. Numerical simulation of this mate...
متن کامل