ON THE DEPTH OF THE ASSOCIATED GRADED RING OF AN IDEAL Author:
نویسنده
چکیده
Let R be a local Cohen-Macaulay ring, I an R-ideal and G the associated graded ring of I. We give an estimate for the depth of G when G fails to be Cohen-Macaulay. We assume that I has small reduction number, sufficiently good residual intersection properties, and satisfies local conditions on the depth of some powers. The main theorem unifies and generalizes several known results. We also give conditions that imply the Serre properties of the blow-up rings.
منابع مشابه
Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملGraded r-Ideals
Let $G$ be a group with identity $e$ and $R$ be a commutative $G$-graded ring with nonzero unity $1$. In this article, we introduce the concept of graded $r$-ideals. A proper graded ideal $P$ of a graded ring $R$ is said to be graded $r$-ideal if whenever $a, bin h(R)$ such that $abin P$ and $Ann(a)={0}$, then $bin P$. We study and investigate the behavior of graded $r$-ideals to introduce ...
متن کاملDepth of Associated Graded Rings via Hilbert Coefficients of Ideals
Given a local Cohen-Macaulay ring (R,m), we study the interplay between the integral closedness – or even the normality – of an m-primary R-ideal I and conditions on the Hilbert coefficients of I . We relate these properties to the depth of the associated graded ring of I .
متن کامل