Computing Jordan Normal Forms Exactly for Commuting Matrices in Polynomial Time
نویسنده
چکیده
We prove that the Jordan Normal Form of a rational matrix can be computed exactly in polynomial time. We obtain the transformation matrix and its inverse exactly, and we show how to apply the basis transformation to any commuting matrices.
منابع مشابه
On Commuting Matrices in Max Algebra and in Classical Nonnegative Algebra
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector, which directly leads to max analogues of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we ...
متن کاملMultiplicative Equations over Commuting Matrices (extended Abstract)
We consider the solvability of the equation k Yi=1Aixi = B and generalizations, where the Ai and B are given commutingmatrices over an algebraic number eld F . In the semigroup membership problem, the variables xi are constrained to be nonnegative integers. While this problem is NP-complete for variable k, we give a polynomial time algorithm if k is xed. In the group membership problem, the mat...
متن کاملCommuting Pairs in the Centralizers of 2-regular Matrices
In Mn(k), k an algebraically closed field, we call a matrix l-regular if each eigenspace is at most l-dimensional. We prove that the variety of commuting pairs in the centralizer of a 2-regular matrix is the direct product of various affine spaces and various determinantal varieties Zl,m obtained from matrices over truncated polynomial rings. We prove that these varieties Zl,m are irreducible, ...
متن کاملAdditive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements
Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...
متن کاملFast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*
Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 5 شماره
صفحات -
تاریخ انتشار 1994