Measuring Conflict Between Possibilistic Uncertain Information Through Belief Function Theory
نویسنده
چکیده
Dempster Shafer theory of evidence (DS theory) and possibility theory are two main formalisms in modelling and reasoning with uncertain information. These two theories are inter-related as already observed and discussed in many papers (e.g. [DP82,DP88b]). One aspect that is common to the two theories is how to quantitatively measure the degree of conflict (or inconsistency) between pieces of uncertain information. In DS theory, traditionally this is judged by the combined mass value assigned to the emptyset. Recently, two new approaches to measuring the conflict among belief functions are proposed in [JGB01,Liu06]. The former provides a distance-based method to quantify how close a pair of beliefs is while the latter deploys a pair of values to reveal the degree of conflict of two belief functions. On the other hand, in possibility theory, this is done through measuring the degree of inconsistency of merged information. However, this measure is not sufficient when pairs of uncertain information have the same degree of inconsistency. At present, there are no other alternatives that can further differentiate them, except an initiative based on coherence-intervals ([HL05a,HL05b]). In this paper, we investigate how the two new approaches developed in DS theory can be used to measure the conflict among possibilistic uncertain information. We also examine how the reliability of a source can be assessed in order to weaken a source when a conflict arises.
منابع مشابه
Conflict-Based Belief Revision Operators in Possibilistic Logic
In this paper, we investigate belief revision in possibilistic logic, which is a weighted logic proposed to deal with incomplete and uncertain information. Existing revision operators in possibilistic logic are restricted in the sense that the input information can only be a formula instead of a possibilistic knowledge base which is a set of weighted formulas. To break this restriction, we cons...
متن کاملConflict-Based Belief Revision Operators in Possibilistic Logic
In this paper, we investigate belief revision in possibilistic logic, which is a weighted logic proposed to deal with incomplete and uncertain information. Existing revision operators in possibilistic logic are restricted in the sense that the input information can only be a formula instead of a possibilistic knowledge base which is a set of weighted formulas. To break this restriction, we cons...
متن کاملBelief Revision and Updates in Numerical Formalisms: An Overview, with new Results for the Possibilistic Framework
The difference between Bayesian conditioning and Lewis' imaging is somewhat similar to the one between Gardenfors' belief revision and Katsuno and Mendelzon' updating in the logical framework. Counterparts in possibility theory of these two operations are presented, including the case of conditioning upon an uncertain observation. Possibilistic conditioning satisfies all the postulates for beli...
متن کاملMerging Interval-Based Possibilistic Belief Bases
In the last decade, several approaches were introduced in literature to merge multiple and potentially conflicting pieces of information. Within the growing field of application favourable to distributed information, data fusion strategies aim at providing a global and consistent point of view over a set of sources which can contradict each other. Moreover, in many situations, the pieces of inf...
متن کاملMeasuring the Quality of Uncertain Information Using Possibilistic Logic
In previous papers, we have presented a framework for merging structured information in XML involving uncertainty in the form of probabilities, degrees of beliefs and necessity measures [HL04,HL05a,HL05b]. In this paper, we focus on the quality of uncertain information before merging. We first provide two definitions for measuring information quality of individually inconsistent possibilistic X...
متن کامل