Plant traits and wood fates across the globe: rotted,

نویسنده

  • N E
چکیده

Wood represents the defining feature of forest systems, and often the carbon in woody debris has a long residence time. Globally, coarse dead wood contains 36–72 Pg C, and understanding what controls the fate of this C is important for predicting C cycle responses to global change. The fate of a piece of wood may include one or more of the following: microbial decomposition, combustion, consumption by insects, and physical degradation. The probability of each fate is a function of both the abiotic environment and the wood traits of the species. The wood produced by different species varies substantially in chemical, microand macro-morphological traits; many of these characteristics of living species have ‘afterlife’ effects on the fate and turnover rate of dead wood. The colonization of dead wood by microbes and their activity depends on a large suite of wood chemical and anatomical traits, as well as whole-plant traits such as stem-diameter distributions. Fire consumption is driven by a slightly narrower range of traits with little dependence on wood anatomy. Wood turnover due to insects mainly depends on wood density and secondary chemistry. Physical degradation is a relatively minor loss pathway for most systems, which depends on wood chemistry and environmental conditions. We conclude that information about the traits of woody plants could be extremely useful for modeling and predicting rates of wood turnover across ecosystems. We demonstrate how this trait-based approach is currently limited by oversimplified treatment of dead wood pools in several leading global C models and by a lack of quantitative empirical data linking woody plant traits with the probability and rate of each turnover pathway. Explicitly including plant traits and woody debris pools in global vegetation climate models would improve predictions of wood turnover and its feedback to climate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioactive constituents of wood rot extract of tea, Camellia sinensis L.O. Kuntze against alates of low country live wood termite Glyptotermes dilatatus Bugnion and Popoff (Isoptera: Kalotermitidae).

Low country live wood termite (LCLWT), Glyptotermes dilatatus is attractive to rotted stumps of tea plant, Camellia sinensis. Rotted stumps are formed due to the attack of wood rot fungi in pruned stems. The objective of the present study was to investigate the response of LCLWT to extracts of rotted and healthy stems of susceptible tea cultivars, TRI 2023 and TRI 4042 and tolerant cultivars, T...

متن کامل

Xxx. the Biochemistry of Dry-rot in Wood Iii. an Investigation of the Products of the Decay of Pine Wood Rotted by Merulius Lachrymans

THE previous observation [Barton-Wright & Boswell, 1929, 1931] that the dry-rot fungus Merulius lachrymans can be classified as of the "brown rot" type is confirmed. The present communication deals with the detailed constitution of the cellulose-containing, water-soluble and dilute alkali-soluble fractions which were only superficially studied in the earlier work. From the alcohol-soluble fract...

متن کامل

Preparation and Characterization of Novolak Phenol Formaldehyde Resin from Liquefied Brown-Rotted Wood

The brown-rotted wood was liquefied in phenol with phosphoric acid as catalyst and the resulting liquefied products were condensed with formaldehyde to yield novolak liquefied wood-based phenol formaldehyde resin (LWPF). The results showed that brown-rotted wood could be more easily liquefied than sound wood in phenol. The residue content of liquefied wood decreased continually with the progres...

متن کامل

Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients.

Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad enviro...

متن کامل

Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms.

Wood density and vessel characteristics are functionally interrelated, yet they may have distinct ecological associations. In a comparative study of 51 angiosperm species ranging from chaparral shrubs to riparian trees, we examined relationships among wood density and vessel traits and their ecological correlates. Mean vessel lumen area and vessel density (number mm(-2)) varied widely (7- to 10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009