Geometry of product complex Cartan manifolds
نویسندگان
چکیده
In this paper we consider the product of two complex Cartan manifolds, the outcome being a class of product complex Cartan spaces. Then, we study the relationships between the geometric objects of a product complex Cartan space and its components, (e.g. Chern-Cartan complex nonlinear connection, Cartan tensors). By means of these, we establish the necessary and sufficient conditions under which a product complex Cartan space is Landsberg-Cartan or Berwald-Cartan or it has some other properties.
منابع مشابه
Geometry of Maurer-Cartan Elements on Complex Manifolds
The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie alge...
متن کاملKilling Fields of Holomorphic Cartan Geometries
We study local automorphisms of holomorphic Cartan geometries. This leads to classification results for compact complex manifolds admitting holomorphic Cartan geometries. We prove that a compact Kähler Calabi-Yau manifold bearing a holomorphic Cartan geometry of algebraic type admits a finite unramified cover which is a complex
متن کاملTractor Bundles in Cr Geometry
This is an outline of my lecture at the Hayama Symposium on several complex variables on December 21, 2002. The subject of the talk are new applications of the canonical Cartan connection for CR manifolds. Most of the results I will report on are based on joint research (partly in progress) with A.R. Gover and with J. Slovák and V. Souček. Partly, these results are specific for the class of CR ...
متن کاملManifolds of G 2 Holonomy from N = 4 Sigma Model
Using two dimensional (2D) N = 4 sigma model, with U(1) gauge symmetry, and introducing the ADE Cartan matrices as gauge matrix charges, we build ” toric” hyperKahler eight real dimensional manifolds X8. Dividing by one toric geometry circle action of X8 manifolds, we present examples describing quotients X7 = X8 U(1) of G2 holonomy. In particular, for the Ar Cartan matrix, the quotient space i...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کامل