The Eisenstein Cocycle and Gross’s Tower of Fields Conjecture
نویسندگان
چکیده
This paper is an announcement of the following result, whose proof will be forthcoming. Let F be a totally real number field, and let F ⊂ K ⊂ L be a tower of fields with L/F a finite abelian extension. Let I denote the kernel of the natural projection from Z[Gal(L/F )] to Z[Gal(K/F )]. Let Θ ∈ Z[Gal(L/F )] denote the Stickelberger element encoding the special values at zero of the partial zeta functions of L/F , taken relative to sets S and T in the usual way. Let r denote the number of places in S that split completely in K. We show that Θ ∈ Ir, unless K is totally real in which case we obtain Θ ∈ Ir−1 and 2Θ ∈ Ir. This proves a conjecture of Gross up to the factor of 2 in the case that K is totally real and #S 6= r. In this article we sketch the proof in the case that K is totally complex. Résumé Ce papier est une annonce du résultat suivant, dont la preuve est imminente. Soit F un corps de nombres totalement réel, et soit F ⊂ K ⊂ L une tour d’extensions, où l’extension L/F est abélienne finie. Soit I le noyau de la projection naturelle de Z[Gal(L/F )] vers Z[Gal(K/F )]. Soit Θ ∈ Z[Gal(L/F )] l’élément de Stickelberger qui encode les valeurs spéciales en zéro des fonctions zêta partielles de L/F , prise par rapport à des ensembles S et T de places de F de la manière usuelle. Soit r le nombre de places dans S qui sont totalement déployées dans K. Nous démontrons que Θ ∈ Ir, à moins que K ne soit totalement réel auquel cas nous obtenons Θ ∈ Ir−1 et 2Θ ∈ Ir. Ceci démontre une conjecture de Gross, à un facteur de 2 près dans le cas où K est totalement réel et #S 6= r. Dans cet article, nous esquissons une preuve dans le cas où l’extension K est totalement complexe.
منابع مشابه
Partial zeta values, Gross’s tower of fields conjecture, and Gross–Stark units
We prove a conjecture of Gross regarding the “order of vanishing” of Stickelberger elements relative to an abelian tower of fields and give a cohomological construction of the conjectural Gross–Stark units. This is achieved by introducing an integral version of the Eisenstein cocycle.
متن کاملThe Eisenstein cocycle, partial zeta values and Gross–Stark units
We introduce an integral version of the Eisenstein cocycle. As applications we prove a conjecture of Gross regarding the “order of vanishing” of Stickelberger elements relative to an abelian tower of fields and give a cohomological construction of the conjectural Gross–Stark units.
متن کاملOn the Characteristic Polynomial of the Gross Regulator Matrix
We present a conjectural formula for the principal minors and the characteristic polynomial of Gross’s regulator matrix associated to a totally odd character of a totally real field. The formula is given in terms of the Eisenstein cocycle, which was defined and studied earlier by the authors and collaborators. For the determinant of the regulator matrix, our conjecture follows from recent work ...
متن کاملElliptic units for real quadratic fields
1. A review of the classical setting 2. Elliptic units for real quadratic fields 2.1. p-adic measures 2.2. Double integrals 2.3. Splitting a two-cocycle 2.4. The main conjecture 2.5. Modular symbols and Dedekind sums 2.6. Measures and the Bruhat-Tits tree 2.7. Indefinite integrals 2.8. The action of complex conjugation and of Up 3. Special values of zeta functions 3.1. The zeta function 3.2. Va...
متن کاملDepartment of Mathematics and Computer
In a remarkable 1993 paper, R. Sczech defined a group cocycle on GLn(Q) valued in a certain Q-vector space. This cocycle is constructed using conditionally convergent sums over lattices in Euclidean space and is called the Eisenstein cocycle. Sczech showed that certain specializations of the Eisenstein cocycle yield special values of the L-series of totally real fields. We will describe how one...
متن کامل