How predation shaped fish: the impact of fin spines on body form evolution across teleosts.

نویسندگان

  • S A Price
  • S T Friedman
  • P C Wainwright
چکیده

It is well known that predators can induce morphological changes in some fish: individuals exposed to predation cues increase body depth and the length of spines. We hypothesize that these structures may evolve synergistically, as together, these traits will further enlarge the body dimensions of the fish that gape-limited predators must overcome. We therefore expect that the orientation of the spines will predict which body dimension increases in the presence of predators. Using phylogenetic comparative methods, we tested this prediction on the macroevolutionary scale across 347 teleost families, which display considerable variation in fin spines, body depth and width. Consistent with our predictions, we demonstrate that fin spines on the vertical plane (dorsal and anal fins) are associated with a deeper-bodied optimum. Lineages with spines on the horizontal plane (pectoral fins) are associated with a wider-bodied optimum. Optimal body dimensions across lineages without spines paralleling the body dimension match the allometric expectation. Additionally, lineages with longer spines have deeper and wider body dimensions. This evolutionary relationship between fin spines and body dimensions across teleosts reveals functional synergy between these two traits and a potential macroevolutionary signature of predation on the evolutionary dynamics of body shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fish ‘tails’ result from outgrowth and reduction of two separate ancestral tails

The symmetrical, flexible teleost fish 'tail' has been a prime example of recapitulation - evolutionary change (phylogeny) mirrored in development (ontogeny). Paleozoic ray-finned fishes (Actinopterygii), relatives of teleosts, exhibited ancestral scale-covered tails curved over their caudal fins. For over 150 years, this arrangement was thought to be retained in teleost larva and overgrown, mi...

متن کامل

Whole-lake influences of littoral structural complexity and prey body morphology on fish predator–prey interactions

We used a longline tethering method to examine the relationship between prey refugia, prey body morphology and the location and magnitude of predation mortality within an individual lake and among three lakes that differed in coarse woody habitat (CWH) and aquatic macrophyte abundances. Predation events were lowest in the macrophyte and/or CWH refuges, peaked at or just beyond the refuge edge a...

متن کامل

New species of Trimma (Actinopterygii, Gobiidae) from Indonesia, with comments on head papillae nomenclature.

Three new species of the gobiid Trimma are described from Indonesian waters, and a partially reformulated nomenclature for the cephalic sensory papillae of members of this genus is provided. Trimma aturirii possesses two dark oblique stripes on either side of the pupil (blue, edged with red in life, dark brown in preservative), the lower of which continues posteriorly across the dorsal margin o...

متن کامل

The Medaka zic1/zic4 Mutant Provides Molecular Insights into Teleost Caudal Fin Evolution

Teleosts have an asymmetrical caudal fin skeleton formed by the upward bending of the caudal-most portion of the body axis, the ural region. This homocercal type of caudal fin ensures powerful and complex locomotion and is regarded as one of the most important innovations for teleosts during adaptive radiation in an aquatic environment. However, the mechanisms that create asymmetric caudal fin ...

متن کامل

The origins of adipose fins: an analysis of homoplasy and the serial homology of vertebrate appendages.

Adipose fins are appendages found on the dorsal midline between the dorsal and caudal fins in more than 6000 living species of teleost fishes. It has been consistently argued that adipose fins evolved once and have been lost repeatedly across teleosts owing to limited function. Here, we demonstrate that adipose fins originated repeatedly by using phylogenetic and anatomical evidence. This sugge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 282 1819  شماره 

صفحات  -

تاریخ انتشار 2015