A Comparative Study of Sift and PCA for Content Based Image Retrieval
نویسنده
چکیده
This paper presents a comparative approach for Content Based Image Retrieval (CBIR) using Scale Invariant Feature Transform (SIFT) algorithm and Principal Component Analysis (PCA) for color images. The motivation to use SIFT algorithm for CBIR is due to the fact that SIFT is invariant to scale, rotation and translation as well as partially invariant to affine distortion and illumination changes. Inspired by these facts, the paper investigates the fundamental properties of SIFT for robust CBIR by using binary MPEG-7 and Grayscale COIL-20 and Color image databases. Our approach uses detected keypoints and its descriptors to match between the query image and images from the database. Our experimental results show that the proposed CBIR using SIFT algorithm produces excellent retrieval result for images with many corners (concaves) and edges (convex) as compared to retrieving image with less corners and edges. The paper also presents another approach for CBIR using Principal Component Analysis (PCA) for Color images. The main aim of the paper is to employ SIFT and PCA methods on the same Image databases and perform a comparative study of results between SIFT and PCA approaches using Precision and Recall tables. The study reveals that SIFT approach provides a better Image retrieval performance for binary, gray scale and color images when compared to PCA.
منابع مشابه
A Comparative Study of SIFT and its Variants
SIFT is an image local feature description algorithm based on scale-space. Due to its strong matching ability, SIFT has many applications in different fields, such as image retrieval, image stitching, and machine vision. After SIFT was proposed, researchers have never stopped tuning it. The improved algorithms that have drawn a lot of attention are PCA-SIFT, GSIFT, CSIFT, SURF and ASIFT. In thi...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کامل