Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex.
نویسندگان
چکیده
MicroRNAs (miRNAs) are small noncoding RNAs that regulate eukaryotic gene expression by binding to regions of imperfect complementarity in mRNAs, typically in the 3' UTR, recruiting an Argonaute (Ago) protein complex that usually results in translational repression or destabilization of the target RNA. The translation and decay of mRNAs are closely linked, competing processes, and whether the miRNA-induced silencing complex (RISC) acts primarily to reduce translation or stability of the mRNA remains controversial. miR-122 is an abundant, liver-specific miRNA that is an unusual host factor for hepatitis C virus (HCV), an important cause of liver disease in humans. Prior studies show that it binds the 5' UTR of the messenger-sense HCV RNA genome, stimulating translation and promoting genome replication by an unknown mechanism. Here we show that miR-122 binds HCV RNA in association with Ago2 and that this slows decay of the viral genome in infected cells. The stabilizing action of miR-122 does not require the viral RNA to be translationally active nor engaged in replication, and can be functionally substituted by a nonmethylated 5' cap. Our data demonstrate that a RISC-like complex mediates the stability of HCV RNA and suggest that Ago2 and miR-122 act coordinately to protect the viral genome from 5' exonuclease activity of the host mRNA decay machinery. miR-122 thus acts in an unconventional fashion to stabilize HCV RNA and slow its decay, expanding the repertoire of mechanisms by which miRNAs modulate gene expression.
منابع مشابه
microRNA-122 Dependent Binding of Ago2 Protein to Hepatitis C Virus RNA Is Associated with Enhanced RNA Stability and Translation Stimulation
Translation of Hepatitis C Virus (HCV) RNA is directed by an internal ribosome entry site (IRES) in the 5'-untranslated region (5'-UTR). HCV translation is stimulated by the liver-specific microRNA-122 (miR-122) that binds to two binding sites between the stem-loops I and II near the 5'-end of the 5'-UTR. Here, we show that Argonaute (Ago) 2 protein binds to the HCV 5'-UTR in a miR-122-dependen...
متن کاملDifferential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3΄ variants
In addition to suppressing cellular gene expression, certain miRNAs potently facilitate replication of specific positive-strand RNA viruses. miR-122, a pro-viral hepatitis C virus (HCV) host factor, binds and recruits Ago2 to tandem sites (S1 and S2) near the 5΄ end of the HCV genome, stabilizing it and promoting its synthesis. HCV target site selection follows canonical miRNA rules, but how no...
متن کاملModulation of GB virus B RNA abundance by microRNA-122: dependence on and escape from microRNA-122 restriction.
Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was ...
متن کاملHepatitis C virus represses the cellular antiviral response by upregulating the expression of signal transducer and activator of transcription 3 through sponging microRNA-122
MicroRNAs (miRNAs) are small, non‑coding RNAs that inhibit the expression of target protein coding genes at the post‑transcriptional level. miR‑122 is a liver specific miRNA. Notably, miR‑122 is used by the hepatitis C virus (HCV) for triggering viral replication by interacting with the 5' untranslated region of the HCV RNA. The present study demonstrated that miR‑122 inhibited the expression o...
متن کاملMasking the 5' terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex.
Hepatitis C virus subverts liver-specific microRNA, miR-122, to upregulate viral RNA abundance in both infected cultured cells and in the liver of infected chimpanzees. These findings have identified miR-122 as an attractive antiviral target. Thus, it is imperative to know whether a distinct functional complex exists between miR-122 and the viral RNA versus its normal cellular target mRNAs. Tow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 3 شماره
صفحات -
تاریخ انتشار 2012