Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria)
نویسندگان
چکیده
The distribution and genetic structure of many marine invertebrates in the North Atlantic have been influenced by the Pleistocene glaciation, which caused local extinctions followed by recolonization in warmer periods. Mitochondrial DNA markers are typically used to reconstruct species histories. Here, two mitochondrial markers [16S rDNA and cytochrome c oxidase I (COI)] were used to study the evolution of the widely distributed hydrozoan Obelia geniculata (Linnaeus, 1758) from the North Atlantic and the Pacific and, more specifically, in the context of North Atlantic phylogeography. Samples were collected from six geographic localities between 1998 and 2002. Hydroids from the North Atlantic, North Pacific (Japan), and South Pacific (New Zealand) are reciprocally monophyletic and may represent cryptic species. Using portions of the 16S rDNA and COI genes and the date of the last trans-Arctic interchange (3.1–4.1 million years ago), the first calibrated rate of nucleotide substitutions in hydrozoans is presented. Whereas extremely low substitution rates have been reported in other cnidarians, mainly based on anthozoans, substitution rates in O. geniculata are comparable to other invertebrates. Despite a life history that ostensibly permits substantial dispersal, there is apparently considerable genetic differentiation in O. geniculata. Divergence estimates and the presence of unique haplotypes provide evidence for glacial refugia in Iceland and New Brunswick, Canada. A population in Massachusetts, USA, appears to represent a relatively recent colonization event.
منابع مشابه
Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria).
The Campanulariidae is a group of leptomedusan hydroids (Hydrozoa, Cnidaria) that exhibit a diverse array of life cycles ranging from species with a free medusa stage to those with a reduced or absent medusa stage. Perhaps the best-known member of the taxon is Obelia which is often used as a textbook model of hydrozoan life history. However, Obelia medusae have several unique features leading t...
متن کاملPhylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription.
Hydrozoans display the most morphological diversity within the phylum Cnidaria. While recent molecular studies have provided some insights into their evolutionary history, sister group relationships remain mostly unresolved, particularly at mid-taxonomic levels. Specifically, within Hydroidolina, the most speciose hydrozoan subclass, the relationships and sometimes integrity of orders are highl...
متن کاملEvolution of calcium-carbonate skeletons in the Hydractiniidae.
Biomineralization has mostly been studied in the class Anthozoa (Phylum Cnidaria), but very little is known about the evolution of the calcified skeleton in the class Hydrozoa or about the processes leading to its formation. The evolution of the calcified skeleton is here investigated in the hydrozoan family Hydractiniidae. A phylogenetic analysis of ribosomal, mitochondrial, and nuclear-protei...
متن کاملEvolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians
In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many quest...
متن کاملMulti-colored homologs of the green fluorescent protein from hydromedusa Obelia sp.
The presence of green fluorescent protein (GFP) within the bioluminescent system of Obelia (Cnidaria, Hydrozoa, Campanulariidae) was inferred shortly after the discovery of GFP in Aequorea. Despite the enormous success of Aequorea GFP as a genetically encoded fluorescent label, Obelia GFP thus far has been defeating attempts to clone it from the hydroid life cycle stage. Here, we report cloning...
متن کامل