Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride

نویسندگان

  • Hiromi Tamada
  • Hiroshi Kiyama
چکیده

Adult neurogenesis rarely occurs in the enteric nervous system (ENS). In this study, we demonstrated that, after intestinal myenteric plexus (MP) ablation with benzalkonium chloride (BAC), adult neurogenesis in the ENS was significantly induced in c-kit loss-of-function mutant mice (W/W(v)). Almost all neurons and fibers in the MP disappeared after BAC treatment. However, 1 week after ablation, substantial penetration of nerve fibers from the non-damaged area was observed in the MP, longitudinal muscle and subserosal layers in both wildtype and W/W(v) mice. Two weeks after BAC treatment, in addition to the penetrating fibers, a substantial number of ectopic neurons appeared in the subserosal and longitudinal muscle layers of W/W(v) mice, whereas only a few ectopic neurons appeared in wildtype mice. Such ectopic neurons expressed either excitatory or inhibitory intrinsic motor neuron markers and formed ganglion-like structures, including glial cells, synaptic vesicles and basal lamina. Furthermore, oral administration of imatinib, an inhibitor of c-Kit and an anticancer agent for gastrointestinal stromal tumors, markedly induced appearance of ectopic neurons after BAC treatment, even in wildtype mice. These results suggest that adult neurogenesis in the ENS is negatively regulated by c-Kit signaling in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regeneration of myenteric plexus in the mouse colon after experimental denervation with benzalkonium chloride.

Recent reports suggest a far greater plasticity in nerve tissue than previously believed. As the digestive tract is exposed to a variety of insults, this question is relevant to enteric nerves, but little is known about their ability to recover from damage. To address this problem, we ablated the myenteric plexus of the mouse colon with the detergent benzalkonium chloride (BAC) and followed the...

متن کامل

Antroduodenal coordinated contractions as studied by chemical ablation of myenteric neurons in the gastroduodenal junctional zone.

Antroduodenal contractions were studied in rat preparations. Augmented duodenal contractions occurred spontaneously in coordination with antral contractions in normal and saline-pretreated preparations. The coordination did not occur when muscle layers and the myenteric plexus were transversely cut at the duodenum just anal to the gastroduodenal junction. In silent preparations, the coordinated...

متن کامل

Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

Interstitial cells of Cajal (ICCs) in gastrointestinal tract are specialized cells serving as pacemaker cells. The origin of ICCs is currently not fully characterized. In this work, we aimed to study whether bone marrow-derived cells (BMDCs) could contribute to the origin of ICCs in the muscular plexus of small intestine using GFP-C57BL/6 chimeric mice.Engraftment of BMDCs in the intestine was ...

متن کامل

Neural mediation of vasoactive intestinal polypeptide inhibitory effect on jejunal alanine absorption.

It was recently shown that vasoactive intestinal polypeptide (VIP) inhibits rat jejunal alanine absorption, an effect that was significantly reduced by vagotomy. This study assesses the role of capsaicin-sensitive primary afferents (CSPA) and the myenteric plexus in the inhibition of rat jejunal alanine absorption by VIP. Continuous intravenous infusion of VIP (11.2 ng ⋅ kg-1 ⋅ min-1) reduced a...

متن کامل

Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker.

In the small intestine, interstitial cells of Cajal (ICC) surrounding the myenteric plexus generate the pacemaking slow waves that are essential for an efficient intestinal transit. The underlying molecular mechanisms of the slow wave are poorly known. Our aim was to identify ICC-specific genes and their function in the mouse jejunum. Suppression subtractive hybridization using two independent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016