Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

نویسندگان

  • Jie Chen
  • Haoqiang Zhang
  • Xinlu Zhang
  • Ming Tang
چکیده

Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on the photosynthetic capacity, water status, and K+/Na+ homeostasis lead to the improved growth performance and salt tolerance of black locust exposed to salt stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Rhizophagus irregularis on Photosynthesis and Antioxidative Enzymatic System in Robinia pseudoacacia L. under Drought Stress

Arbuscular mycorrhizal (AM) fungi colonize roots improving plant water status and tolerance to drought. However, it is not clear whether the presence of AM would affect the photosynthesis and antioxidant gene-enzymes response, which help to alleviate drought stress of the host plant. Here, pot experiments were performed to investigate the effects of Rhizophagus irregularis, an AM fungus, on the...

متن کامل

Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress

The influences of arbuscular mycorrhizal (AM) fungus on growth, gas exchange, chlorophyll concentration, chlorophyll fluorescence and water status of maize (Zea mays L.) plants were studied in pot culture under well-watered and drought stress conditions. The maize plants were grown in a sand and black soil mixture for 4 weeks, and then exposed to drought stress for 4 weeks. Drought stress signi...

متن کامل

Why does oriental arborvitae grow better when mixed with black locust: Insight on nutrient cycling?

To identify why tree growth differs by afforestation type is a matter of prime concern in forestry. A study was conducted to determine why oriental arborvitae (Platycladus orientalis) grows better in the presence of black locust (Robinia pseudoacacia) than in monoculture. Different types of stands (i.e., monocultures and mixture of black locust and oriental arborvitae, and native grassland as a...

متن کامل

Arbuscular mycorrhizal fungi in alleviation of salt stress: a review.

BACKGROUND Salt stress has become a major threat to plant growth and productivity. Arbuscular mycorrhizal fungi colonize plant root systems and modulate plant growth in various ways. SCOPE This review addresses the significance of arbuscular mycorrhiza in alleviation of salt stress and their beneficial effects on plant growth and productivity. It also focuses on recent progress in unravelling...

متن کامل

تاثیر همزیستی قارچ اندوفیت بر برخی شاخصهای فیزیولوژیک گیاه گوجه‌فرنگی تحت تنش شوری 10 روزه

The influence of endophyte fungus piriformospora indica on characteristics of the growth, water status, photosynthetic pigments concentration, gas exchange, and chlorophyll fluorescence of tomato plants under salt stress (0, 50, 100 and 150 mM) was studied in the greenhouse. Under salt stress, mycorrhizal tomato plants had higher dry weight of shoot and root, higher height, higher carotenoid an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017