Allowed Patterns of Symmetric Tent Maps via Commuter Functions

نویسندگان

  • Kassie Archer
  • Scott M. LaLonde
چکیده

We introduce a new technique to study pattern avoidance in dynamical systems, namely the use of a commuter function between non-conjugate dynamical systems. We investigate the properties of such a commuter function, specifically h : [0, 1]→ [0, 1] satisfying T1 ◦ h = h ◦ Tμ, where Tμ denotes a symmetric tent map of height μ. We make use of this commuter function to prove strict inclusion of the set of allowed patterns of Tμ in the set of allowed patterns of T1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Commuter Functions for Homeomorphic Defect Measure in Dynamical Systems Model Comparison

In the field of dynamical system, conjugacy describes an equivalent relation between two dynamical systems. In our work, we are dealing with mostly conjugacy, which relates two dynamical systems that are not necessarily conjugate. We generate a function called ”commuter” based on a fixed point iteration scheme. The resulting ”commuter” is a nonhomeomorphic change of coordinates translating betw...

متن کامل

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

On the entropy devil’s staircase in a family of gap-tent maps

To analyze the trade-off between channel capacity and noise-resistance in designing dynamical systems to pursue the idea of communications with chaos, we perform a measure theoretic analysis the topological entropy function of a “gap-tent map” whose invariant set is an unstable chaotic saddle of the tent map. Our model system, the “gap-tent map” is a family of tent maps with a symmetric gap, wh...

متن کامل

Probability Density Functions of Some Skew Tent Maps

We consider a family of chaotic skew tent maps. The skew tent map is a two-parameter, piecewise-linear, weakly-unimodal, map of the interval Fa;b. We show that Fa;b is Markov for a dense set of parameters in the chaotic region, and we exactly nd the probability density function (pdf), for any of these maps. It is well known, [1], that when a sequence of transformations has a uniform limit F , a...

متن کامل

A one-parameter family of analytic Markov maps with an intermittency transition

In this paper we introduce and study a one-parameter family of piecewise analytic interval maps having the tent map and the Farey map as extrema. Among other things, we construct a Hilbert space of analytic functions left invariant by the Perron-Frobenius operator of all these maps and study the transition between discrete and continuous spectrum when approaching the intermittent situation. AMS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017