Spectral Methods for Periodic Initial Value Problems with Nonsmooth Data

نویسندگان

  • PRAVIR K. DUTT
  • A. K. SINGH
  • P. K. DUTT
چکیده

In this paper we consider hyperbolic initial value problems subject to periodic boundary conditions with nonsmooth data. We show that if we filter the data and solve the problem by the Galerkin-Collocation method, recently proposed by us, then we can recover pointwise values with spectral accuracy, provided that the actual solution is piecewise smooth. For this we have to perform a local smoothing of the computed solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems

In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...

متن کامل

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

SOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD

Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...

متن کامل

A numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems

In solving semilinear initial boundary value problems with prescribed non-periodic boundary conditions using implicit-explicit and implicit time stepping schemes, both the function and derivatives of the function may need to be computed accurately at each time step. To determine the best Chebyshev collocation method to do this, the accuracy of the real space Chebyshev differentiation, spectral ...

متن کامل

Localization of Nonsmooth Lower and Upper Functions for Periodic Boundary Value Problems

In this paper we present conditions ensuring the existence and localization of lower and upper functions of the periodic boundary value problem u + k u = f(t, u), u(0) = u(2 ), u(0) = u(2 ), k ∈ , k 6= 0. These functions are constructed as solutions of some related generalized linear problems and can be nonsmooth in general.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993