Pathway Induced in Leukemic Cells by Bone Marrow Activation of Integrin-Linked Kinase Is a Critical Prosurvival

نویسندگان

  • Yoko Tabe
  • Linhua Jin
  • Yuko Tsutsumi-Ishii
  • Yuanyuan Xu
  • Teresa McQueen
  • Waldemar Priebe
  • Gordon B. Mills
  • Akimichi Ohsaka
  • Isao Nagaoka
  • Michael Andreeff
  • Marina Konopleva
چکیده

Integrin-linked kinase (ILK) directly interacts with B integrins and phosphorylates Akt in a phosphatidylinositol 3-kinase (PI3K)–dependent manner. In this study, we examined the functional role of ILK activation in leukemic and bone marrow stromal cells on their direct contact. Coculture of leukemic NB4 cells with bone marrow–derived stromal mesenchymal stem cells (MSC) resulted in robust activation of multiple signaling pathways, including ILK/Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers and activators of transcription 3 (STAT3), and Notch1/Hes. Blockade of PI3K or ILK signaling with pharmacologic inhibitors LY294002 or QLT0267 specifically inhibited stroma-induced phosphorylation of Akt and glycogen synthase kinase 3B, suppressed STAT3 and ERK1/2 activation, and decreased Notch1 and Hes1 expression in leukemic cells. This resulted in induction of apoptosis in both leukemic cell lines and in primary acute myelogenous leukemia samples that was not abrogated by MSC coculture. In turn, leukemic cells growing in direct contact with bone marrow stromal elements induce activation of Akt, ERK1/2, and STAT3 signaling in MSC, accompanied by significant increase in Hes1 and Bcl-2 proteins, which were all suppressed by QLT0267 and LY294002. In summary, our results indicate reciprocal activation of ILK/Akt in both leukemic and bone marrow stromal cells. We propose that ILK/Akt is a proximal signaling pathway critical for survival of leukemic cells within the bone marrow microenvironment. Hence, disruption of these interactions by ILK inhibitors represents a potential novel therapeutic strategy to eradicate leukemia in the bone marrow microenvironment by simultaneous targeting of both leukemic cells and activated bone marrow stromal cells. [Cancer Res 2007;67(2):684–94]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Reactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells

Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...

متن کامل

Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML.

SDF-1alpha/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow-derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1alpha (SDF-1alpha)-induced and stroma-induced chemotaxis and inhibited SDF-...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007