Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station

نویسنده

  • P. J. Nair
چکیده

The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP: 43.93 N, 5.71 E), using total column ozone observations from the Dobson and Système d’Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from light detection and ranging (lidar), ozonesondes, Stratospheric Aerosol and Gas Experiment (SAGE) II, Halogen Occultation Experiment (HALOE) and Aura Microwave Limb Sounder (MLS). A multivariate regression model with quasi-biennial oscillation (QBO), solar flux, aerosol optical thickness, heat flux, North Atlantic Oscillation (NAO) and a piecewise linear trend (PWLT) or equivalent effective stratospheric chlorine (EESC) functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in the ranges 15–45 km and 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter, while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of−1.47±0.27 and−1.40±0.25 DUyr−1, respectively, over the period 1984–1996 and about 0.55±0.30 and 0.42±0.08 DUyr−1, respectively, over the period 1997– 2010. The ozone profiles yield similar and significant EESCbased and PWLT trends for 1984–1996, and are about −0.5 and−0.8 %yr−1 in the lower and upper stratosphere, respectively. For 1997–2010, the EESC-based and PWLT estimates are of the order of 0.3 and 0.1 %yr−1, respectively, in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Furthermore, very similar vertical trends for the respective time periods are also deduced from another long-term satellitebased data set (GOZCARDS–Global OZone Chemistry And Related trace gas Data records for the Stratosphere) sampled at northern mid-latitudes. Therefore, this analysis unveils ozone recovery signals from total column ozone and profile measurements at OHP, and hence in the northern midlatitudes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe

Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2 % but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5–6 %. We use eight of the Network for the Detection of Atmospheric Composition Change...

متن کامل

Variability and trends in total and vertically resolved stratospheric ozone based on the CATO ozone data set

Trends in ozone columns and vertical distributions were calculated for the period 1979–2004 based on the ozone data set CATO (Candidoz Assimilated Three-dimensional Ozone) using a multiple linear regression model. CATO has been reconstructed from TOMS, GOME and SBUV total column ozone observations in an equivalent latitude and potential temperature framework and offers a pole to pole coverage o...

متن کامل

Validation of the Aura Ozone Monitoring Instrument total column ozone product

[1] This paper is an overview of the validation of the total column ozone data products from the Ozone Monitoring Instrument (OMI) on board the NASA EOS-Aura satellite. OMI is an imaging UV/visible spectrometer that maps global ozone on a daily basis. There are two ozone products from OMI, one derived using the traditional TOMS retrieval algorithm and another derived using a Differential Optica...

متن کامل

Trends in the vertical distribution of ozone

Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 19...

متن کامل

A three-dimensional model study of long-term mid-high latitude lower stratosphere ozone changes

We have used a 3D off-line chemical transport model (CTM) to study the causes of the observed changes in ozone in the mid-high latitude lower stratosphere from 1979–1998. The model was forced by European Centre for Medium Range Weather Forecasts (ECMWF) analyses and contains a detailed chemistry scheme. A series of model runs were performed at a horizontal resolution of 7.5×7.5 and covered the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013