Marked load-bearing ability of Mytilus smooth muscle in both active and catch states as revealed by quick increases in load.
نویسندگان
چکیده
The anterior byssal retractor muscle (ABRM) of the bivalve Mytilus edulis shows a prolonged tonic contraction, called the catch state. To investigate the catch mechanism, details of which still remain obscure, we studied the mechanical responses of ABRM fibres to quick increases in load applied during maximum active isometric force (P(0)) generation and during the catch state. The mechanical response consisted of three components: (1) initial extension of the series elastic component (SEC), (2) early isotonic fibre lengthening with decreasing velocity, and (3) late steady isotonic fibre lengthening. The ABRM fibres could bear extremely large loads up to 10-15P(0) for more than 30-60 s, while being lengthened extremely slowly. If, on the other hand, quick increases in load were applied during the early isometric force development, the ABRM fibres were lengthened rapidly ('give') under loads of 1.5-2P(0). These findings might possibly be explained by two independent systems acting in parallel with each other; one is the actomyosin system producing active shortening and active force generation, while the other is the load-bearing system responsible for the extremely marked load-bearing ability as well as the maintenance of the catch state.
منابع مشابه
The series elastic component and the force-velocity relation in the anterior byssal retractor muscle of Mytilus edulis during active and catch contractions.
1. The length changes of the anterior byssal retractor muscle (ABRM) of Mytilus edulis, following step changes in load, were studied at various phases of active and catch contractions produced by acetylcholine. 2. The load-extension curves of the series elastic component (SEC) were found to be scaled down in proportion to the isometric tension immediately before step changes in load, but remain...
متن کاملMechanical properties of resting and active isolated coronary arteries.
Coronary arterial smooth muscle is myogenically active, is acted upon by a variety of modulating agents, and is subjected, in situ, to compression and distension by the myocardium. Its mechanical properties thus play a key role in the regulation of coronary blood flow. To describe these, we applied phase-plane analysis of shortening velocity vs. length and load clamping to strips of isolated co...
متن کاملThe Regulation of Catch in Molluscan Muscle
Molluscan catch muscles are smooth muscles. As with mammalian smooth muscles, there is no transverse ordering of filaments or dense bodies. In contrast to mammalian smooth muscles, two size ranges of filaments are present. The thick filaments are long as well as large in diameter and contain paramyosin. The thin filaments contain actin and appear to run into and join the dense bodies. Vesicles ...
متن کاملAn experimental study of axial load transfer mechanisms of cable bolts using axially split embedment apparatus
The load transfer mechanisms of cable bolts differ from those for normal rebar bolts. The cable bolts used in mines are basically steel strands with different constructions depending on the number of wires or elements and the way they are laid. Tendon bolts (rebar and cable) are normally evaluated for their strength and load transfer properties. The tendon strength can be evaluated by the tensi...
متن کاملMechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction.
Muscle contraction and many other cell movements are driven by cyclic interactions between actin filaments and the motor enzyme myosin. Conformational changes in the actin-myosin binding interface occur in concert with the binding of ATP, binding to actin, and loss of hydrolytic by-products, but the effects of these conformational changes on the strength of the actomyosin bond are unknown. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 10 شماره
صفحات -
تاریخ انتشار 2004