Extended Stochastic Dynamics: Theory, Algorithms, and Applications in Multiscale Modelling and Data Science
نویسنده
چکیده
This thesis addresses the sampling problem in a high-dimensional space, i.e., the computation of averages with respect to a defined probability density that is a function of many variables. Such sampling problems arise in many application areas, including molecular dynamics, multiscale models, and Bayesian sampling techniques used in emerging machine learning applications. Of particular interest are thermostat techniques, in the setting of a stochastic-dynamical system, that preserve the canonical Gibbs ensemble defined by an exponentiated energy function. In this thesis we explore theory, algorithms, and numerous applications in this setting. We begin by comparing numerical methods for particle-based models. The class of methods considered includes dissipative particle dynamics (DPD) as well as a newly proposed stochastic pairwise Nosé–Hoover–Langevin (PNHL) method. Splitting methods are developed and studied in terms of their thermodynamic accuracy, two-point correlation functions, and convergence. When computational efficiency is measured by the ratio of thermodynamic accuracy to CPU time, we report significant advantages in simulation for the PNHL method compared to popular alternative schemes in the low-friction regime, without degradation of convergence rate. We propose a pairwise adaptive Langevin (PAdL) thermostat that fully captures the dynamics of DPD and thus can be directly applied in the setting of momentum-conserving simulation. These methods are potentially valuable for nonequilibrium simulation of physical systems. We again report substantial improvements in both equilibrium and nonequilibrium simulations compared to popular schemes in the literature. We also discuss the proper treatment of the Lees– Edwards boundary conditions, an essential part of modelling shear flow. We also study numerical methods for sampling probability measures in high dimension where the underlying model is only approximately identified with a gradient system. These methods are important in multiscale modelling and in the design of new machine learning algorithms for inference and parameterization for large datasets, challenges which are increasingly important in “big data” applications. In addition to providing a more comprehensive discussion of the foundations of these methods, we propose a new numerical method for the adaptive Langevin/stochastic gradient Nosé–Hoover thermostat that achieves a dramatic improvement in numerical efficiency over the most popular stochastic gradient methods reported in the literature. We demonstrate that the newly established method inherits a superconvergence property (fourth order convergence to the invariant measure for configurational quantities) recently demonstrated in
منابع مشابه
Special Session 44: Applications of Chaotic and Stochastic Multiscale Dynamics
Multiscale, chaotic and stochastically parameterized processes are common in many areas of contemporary science, such as molecular dynamics, genetics, neuroscience, nonlinear optics, and geosciences, among others. Key topics on applications of chaotic and stochastic dynamics for complex multiscale systems will be brought together in this interdisciplinary session, ranging from fluid dynamics to...
متن کاملFUZZY INFORMATION AND STOCHASTICS
In applications there occur different forms of uncertainty. The twomost important types are randomness (stochastic variability) and imprecision(fuzziness). In modelling, the dominating concept to describe uncertainty isusing stochastic models which are based on probability. However, fuzzinessis not stochastic in nature and therefore it is not considered in probabilisticmodels.Since many years t...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملAPPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS IN STABILITY INDEX AND CRITICAL LENGTH IN AVALANCHE DYNAMICS
In this study, Stability analysis of snow slab which is under detonation has developed in the present model. The model has been studied by using the basic concepts of non-detonation model and concepts of underwater explosions with appropriate modifications to the present studies. The studies have also been extended to account the effect of critical length variations at the time of detonation an...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کامل