A possibilistic clustering approach to novel fault detection and isolation
نویسندگان
چکیده
In this paper, a new approach for fault detection and isolation that is based on the possibilistic clustering algorithm is proposed. Fault detection and isolation (FDI) is shown here to be a pattern classification problem, which can be solved using clustering and classification techniques. A possibilistic clustering based approach is proposed here to address some of the shortcomings of the fuzzy c-means (FCM) algorithm. The probabilistic constraint imposed on the membership value in the FCM algorithm is relaxed in the possibilistic clustering algorithm. Because of this relaxation, the possibilistic approach is shown in this paper to give more consistent results in the context of the FDI tasks. The possibilistic clustering approach has also been used to detect novel fault scenarios, for which the data was not available while training. Fault signatures that change as a function of the fault intensities are represented as fault lines, which have been shown to be useful to classify faults that can manifest with different intensities. The proposed approach has been validated here through simulations involving a benchmark quadruple tank process and also through experimental case studies on the same setup. For large scale systems, it is proposed to use the possibilistic clustering based approach in the lower dimensional approximations generated by algorithms such as PCA. Towards this end, finally, we also demonstrate the key merits of the algorithm for plant wide monitoring study using a simulation of the benchmark Tennessee Eastman problem.
منابع مشابه
A Novel Fault Detection and Classification Approach in Transmission Lines Based on Statistical Patterns
Symmetrical nature of mean of electrical signals during normal operating conditions is used in the fault detection task for dependable, robust, and simple fault detector implementation is presented in this work. Every fourth cycle of the instantaneous current signal, the mean is computed and carried into the next cycle to discover nonlinearities in the signal. A fault detection task is complete...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملRare Fault Detection by Possibilistic Reasoning
Kernel based neural networks with probabilistic reasoning are suitable for many practical applications. But in uence of data set sizes let the probabilistic approach fail in case of small data amounts. Possibilistic reasoning avoids this drawback because it is independent of class size. The fundamentals of possibilistic reasoning are derived from a probability/possibility consistency principle ...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملA Novel Soft Computing Approach To Component Fault Detection And Isolation Of Cnc X-Axis Drive System
We propose a novel soft computing (SC) based approach to design fault detection and isolation (FDI) systems for industrial plants, in particular a highly nonlinear CNC X-axis drive system's component fault detection. The aim of this paper is twofold. One is to present a general description of various concepts such as the novel fuzzy-neuro architecture that uses fuzzy clustering to build a nomin...
متن کامل