A possibilistic clustering approach to novel fault detection and isolation

نویسندگان

  • K. P. Detroja
  • R. D. Gudi
  • S. C. Patwardhan
چکیده

In this paper, a new approach for fault detection and isolation that is based on the possibilistic clustering algorithm is proposed. Fault detection and isolation (FDI) is shown here to be a pattern classification problem, which can be solved using clustering and classification techniques. A possibilistic clustering based approach is proposed here to address some of the shortcomings of the fuzzy c-means (FCM) algorithm. The probabilistic constraint imposed on the membership value in the FCM algorithm is relaxed in the possibilistic clustering algorithm. Because of this relaxation, the possibilistic approach is shown in this paper to give more consistent results in the context of the FDI tasks. The possibilistic clustering approach has also been used to detect novel fault scenarios, for which the data was not available while training. Fault signatures that change as a function of the fault intensities are represented as fault lines, which have been shown to be useful to classify faults that can manifest with different intensities. The proposed approach has been validated here through simulations involving a benchmark quadruple tank process and also through experimental case studies on the same setup. For large scale systems, it is proposed to use the possibilistic clustering based approach in the lower dimensional approximations generated by algorithms such as PCA. Towards this end, finally, we also demonstrate the key merits of the algorithm for plant wide monitoring study using a simulation of the benchmark Tennessee Eastman problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Fault Detection and Classification Approach in Transmission Lines Based on Statistical Patterns

Symmetrical nature of mean of electrical signals during normal operating conditions is used in the fault detection task for dependable, robust, and simple fault detector implementation is presented in this work. Every fourth cycle of the instantaneous current signal, the mean is computed and carried into the next cycle to discover nonlinearities in the signal. A fault detection task is complete...

متن کامل

Image Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach

Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...

متن کامل

Rare Fault Detection by Possibilistic Reasoning

Kernel based neural networks with probabilistic reasoning are suitable for many practical applications. But in uence of data set sizes let the probabilistic approach fail in case of small data amounts. Possibilistic reasoning avoids this drawback because it is independent of class size. The fundamentals of possibilistic reasoning are derived from a probability/possibility consistency principle ...

متن کامل

Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine

In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...

متن کامل

A Novel Soft Computing Approach To Component Fault Detection And Isolation Of Cnc X-Axis Drive System

We propose a novel soft computing (SC) based approach to design fault detection and isolation (FDI) systems for industrial plants, in particular a highly nonlinear CNC X-axis drive system's component fault detection. The aim of this paper is twofold. One is to present a general description of various concepts such as the novel fuzzy-neuro architecture that uses fuzzy clustering to build a nomin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006