An efficient Foxtail mosaic virus vector system with reduced environmental risk
نویسندگان
چکیده
BACKGROUND Plant viral vectors offer high-yield expression of pharmaceutical and commercially important proteins with a minimum of cost and preparation time. The use of Agrobacterium tumefaciens has been introduced to deliver the viral vector as a transgene to each plant cell via a simple, nonsterile infiltration technique called "agroinoculation". With agroinoculation, a full length, systemically moving virus is no longer necessary for excellent protein yield, since the viral transgene is transcribed and replicates in every infiltrated cell. Viral genes may therefore be deleted to decrease the potential for accidental spread and persistence of the viral vector in the environment. RESULTS In this study, both the coat protein (CP) and triple gene block (TGB) genetic segments were eliminated from Foxtail mosaic virus to create the "FECT" vector series, comprising a deletion of 29% of the genome. This viral vector is highly crippled and expresses little or no marker gene within the inoculated leaf. However, when co-agroinoculated with a silencing suppressor (p19 or HcPro), FECT expressed GFP at 40% total soluble protein in the tobacco host, Nicotiana benthamiana. The modified FoMV vector retained the full-length replicase ORF, the TGB1 subgenomic RNA leader sequence and either 0, 22 or 40 bases of TGB1 ORF (in vectors FECT0, FECT22 and FECT40, respectively). As well as N. benthamiana, infection of legumes was demonstrated. Despite many attempts, expression of GFP via syringe agroinoculation of various grass species was very low, reflecting the low Agrobacterium-mediated transformation rate of monocots. CONCLUSIONS The FECT/40 vector expresses foreign genes at a very high level, and yet has a greatly reduced biohazard potential. It can form no virions and can effectively replicate only in a plant with suppressed silencing.
منابع مشابه
Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.
Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail...
متن کاملA Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.
Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We de...
متن کاملTransient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector
It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as su...
متن کاملMovement of potexviruses requires species-specific interactions among the cognate triple gene block proteins, as revealed by a trans-complementation assay based on the bamboo mosaic virus satellite RNA-mediated expression system.
The intra- and intercellular transport of potexviruses require interactions among viral RNA, coat protein and elements of the triple gene block proteins (TGBps). In this study, the requirement of bamboo mosaic virus (BaMV) TGBps for movement functions and the compatibilities with those of two potexviruses, Potato virus X (PVX) and Foxtail mosaic virus (FoMV), were examined using a satellite RNA...
متن کاملThe entire nucleotide sequence of foxtail mosaic virus RNA.
The nucleotide sequence of the RNA genome of foxtail mosaic virus (FMV), a member of the potexvirus family, is 6151 nucleotides long, exclusive of a poly(A) tail. The RNA contains five principal open reading frames (ORFs), designated from the 5' terminus as encoding proteins with Mr values of 152.3K (ORF1), 26.4K (ORF2) which overlaps an 11.3K (ORF3) product, 5.8K (ORF4) which overlaps a 28.8K ...
متن کامل