Rotating Machinery Fault Diagnosis Based on Fuzzy Data Fusion Techniques

نویسندگان

  • Xiaofeng Liu
  • Lin Ma
  • Joseph Mathew
چکیده

Various diagnostics methods have been applied to machinery condition monitoring and fault diagnosis, with far from satisfactory levels of accuracy. With the development of modern multi-sensor based data acquisition technology often used in advanced signal processing, more and more information is becoming available for the purposes of fault diagnostics and prognostics of machinery integrity. It is recognized that multi-parameter data fusion approach to diagnostics can produce more accurate results. Fuzzy measures have the ability to represent the importance and interactions among different criteria. This paper presents an effective fuzzy measure and fuzzy integral data fusion approach for machinery fault diagnosis. Feature level and decision level data fusion models were developed for machinery fault diagnosis. Rolling element bearing and electrical motor experiments were conducted to validate the models. Different features were obtained from recorded signals and then fused at both feature and decision levels using fuzzy measure and fuzzy integral data fusion methods to produce the diagnostics results. The results show that the proposed approach performs very well for bearing and motor fault diagnosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent Diagnosis of Rotating Machinery Faults-A Review

(2002) Intelligent diagnosis of rotating machinery faults-A review. The task of condition monitoring and fault diagnosis of rotating machinery faults is both significant and important but is often cumbersome and labour intensive. Automating the procedure of feature extraction, fault detection and identification has the advantage of reducing the reliance on experienced personnel with expert know...

متن کامل

Rotating Machinery Fault Diagnosis Based on Wavelet Fuzzy Neural Network

According to complicated fault characteristic of rotating machinery, its fault diagnosis based on wavelet fuzzy neural network (WFNN) which combines wavelet packet analysis and fuzzy neural network is put forward. By using it, the fuzzy fault diagnosis of rotating machinery is realized. All the arithmetic process of WFNN is realized through the computer. The results of simulation and test indic...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Machinery Fault Diagnosis Schemas Based on Fuzzy Integral Theory

Fuzzy measure and fuzzy integral theory is an outgrowth of classical measure theory and has found applications in image processing and information fusion. This paper presents the review of a study on the development of a machinery fault diagnosis application of fuzzy measures and fuzzy integrals. Fuzzy measures and fuzzy integrals take into account the index of importance of criteria and intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008