On the Rapid Intensification of Hurricane Wilma (2005). Part I: Model Prediction and Structural Changes
نویسندگان
چکیده
In this study, a 72-h cloud-permitting numerical prediction of Hurricane Wilma (2005), covering its initial 18-h spinup, an 18-h rapid intensification (RI), and the subsequent 36-h weakening stage, is performed using the Weather Research Forecast Model (WRF) with the finest grid length of 1 km. The model prediction uses the initial and lateral boundary conditions, including the bogus vortex, that are identical to the Geophysical Fluid Dynamics Laboratory’s then-operational data, except for the time-independent sea surface temperature field. Results show that the WRF prediction compares favorably in many aspects to the best-track analysis, as well as satellite and reconnaissance flight-level observations. In particular, the model predicts an RI rate of more than 4 hPa h for an 18-h period, with the minimum central pressure of less than 889 hPa. Of significance is that the model captures a sequence of important inner-core structural variations associated with Wilma’s intensity changes, namely, from a partial eyewall open to the west prior to RI to a full eyewall at the onset of RI, rapid eyewall contraction during the initial spinup, the formation of double eyewalls with a wide moat area in between during the most intense stage, and the subsequent eyewall replacement leading to the weakening of Wilma. In addition, the model reproduces the boundary layer growth up to 750 hPa with an intense inversion layer above in the eye. Recognizing that a single case does not provide a rigorous test of the model predictability due to the stochastic nature of deep convection, results presented herein suggest that it is possible to improve forecasts of hurricane intensity and intensity changes, and especially RI, if the innercore structural changes and storm size could be reasonably predicted in an operational setting using highresolution cloud-permitting models with realistic initial conditions and model physical parameterizations.
منابع مشابه
1 On the observed and modeled development of Hurricane Earl ( 2010 ) during rapid intensification
Forecasting tropical cyclone (TC) intensification remains difficult despite research efforts to improve numerical weather prediction models. This study aims to examine Hurricane Earl’s rapid intensification in order to gain a better understanding of the observed and modeled intensification process. 113 dropwindsondes were analyzed before, during, and after RI in the eye, eyewall, and outer rain...
متن کاملApplication of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes
Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measure...
متن کاملTowards a business continuity information network for rapid disaster recovery
Crisis Management and Disaster Recovery have gained immense importance in the wake of recent man and nature inflicted calamities such as the terrorist attacks of September 11 2001 and hurricanes/earthquakes i.e. Katrina (2005), Wilma (2005) and Indian Ocean Tsunami (2004). Most of the recent work has been conducted for crisis management under terrorist attacks and emergency management services ...
متن کاملA Comparison of HWRF, ARW and NMM Models in Hurricane Katrina (2005) Simulation
The life cycle of Hurricane Katrina (2005) was simulated using three different modeling systems of Weather Research and Forecasting (WRF) mesoscale model. These are, HWRF (Hurricane WRF) designed specifically for hurricane studies and WRF model with two different dynamic cores as the Advanced Research WRF (ARW) model and the Non-hydrostatic Mesoscale Model (NMM). The WRF model was developed and...
متن کاملEnvironmental Interactions in the GFDL Hurricane Model for Hurricane Opal
Hurricane Opal (1995) crossed the Gulf of Mexico rapidly intensifying to a 130-kt storm, then fortunately weakening before landfall on the Florida panhandle. This intensification was underforecast by the National Hurricane Center. Forecast fields from the 1997 version of the Geophysical Fluid Dynamics Laboratory Hurricane Prediction System (GFDL model) for Hurricane Opal are used to diagnose th...
متن کامل