Characteristic two-dimensional Fermi surface topology of high-Tc iron-based superconductors
نویسندگان
چکیده
Unconventional Cooper pairing originating from spin or orbital fluctuations has been proposed for iron-based superconductors. Such pairing may be enhanced by quasi-nesting of two-dimensional electron and hole-like Fermi surfaces (FS), which is considered an important ingredient for superconductivity at high critical temperatures (high-Tc). However, the dimensionality of the FS varies for hole and electron-doped systems, so the precise importance of this feature for high-Tc materials remains unclear. Here we demonstrate a phase of electron-doped CaFe2As2 (La and P co-doped CaFe2As2) with Tc = 45 K, which is the highest Tc found for the AEFe2As2 bulk superconductors (122-type; AE = Alkaline Earth), possesses only cylindrical hole- and electron-like FSs. This result indicates that FS topology consisting only of two-dimensional sheets is characteristic of both hole- and electron-doped 122-type high-Tc superconductors.
منابع مشابه
High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides
In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of mult...
متن کاملCommon electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Ferm...
متن کاملValley density-wave and multiband superconductivity in iron-based pnictide superconductors
The key feature of the Fe-based superconductors is their quasi-two-dimensional multiband Fermi surface. By relating the problem to a negative U Hubbard model and its superconducting ground state, we show that the defining instability of such a Fermi surface is the valley density-wave VDW , a combined spin/charge densitywave at the wave vector connecting the electron and hole valleys. As the val...
متن کاملInteraction-induced singular Fermi surface in a high-temperature oxypnictide superconductor
In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overl...
متن کاملSuperconductivity across Lifshitz transition and anomalous insulating state in surface K–dosed (Li0.8Fe0.2OH)FeSe
In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity (Tc of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K ...
متن کامل