Ensemble modeling of substrate binding to cytochromes P450: analysis of catalytic differences between CYP1A orthologs.
نویسندگان
چکیده
A novel application of modeling and docking approaches involving ensembles of homology models is used to understand structural bases underlying subtle catalytic differences between related cytochromes P450 (CYPs). Mammalian CYP1A1s and fish CYP1As are orthologous enzymes with similar substrate preferences. With some substrates (3,3',4,4'-tetrachlorobiphenyl, TCB) oxidation rates differ by orders of magnitude, while others (e.g., benzo[a]pyrene; B[a]P) are oxidized at similar rates but with somewhat differing regiospecificity. These two environmental chemical substrates (TCB and B[a]P) as well as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were docked to multiple models of rat, human, scup, and/or killifish CYP1As, based on multiple templates, retaining multiple poses from each model, giving ensembles of docked poses for each species. With TCB, more poses were observed closer to the heme in ensembles of rat or human CYP1A1 than of killifish CYP1A. Analysis of interacting residues suggested that differences in TCB pose distributions are due primarily to Leu387 and Val230 in killifish CYP1A. In silico mutations L387V and V230G enabled TCB to dock closer to the heme in killifish CYP1A. Mutating additional interacting residues (Ala127, Thr233, Asn317, and Tyr386) of killifish CYP1A to the corresponding residues of human CYP1A1 resulted in TCB pose distributions nearly identical with those of human CYP1A1. Docking of TCDD to sets of consensus models of killifish, rat, and human CYP1As showed species differences similar to those with TCB, but with further structural constraints possibly contributing to slower oxidation of TCDD. Docking B[a]P to sets of consensus models of the human and fish CYP1As yielded frequencies of substrate orientations correlating with known regiospecificities for metabolism of B[a]P by these enzymes. The results demonstrate the utility of this ensemble modeling method, which can account for uncertainty inherent in homology modeling and docking by producing statistical distributions of ligand positions.
منابع مشابه
Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements
Cytochrome P450 (CYP) enzymes play key roles in drug metabolism and adverse drug-drug interactions. Despite tremendous efforts in the past decades, essential questions regarding the function and activity of CYPs remain unanswered. Here, we used a combination of sequence-based co-evolutionary analysis and structure-based anisotropic thermal diffusion (ATD) molecular dynamics simulations to detec...
متن کاملKinetics and thermodynamics of ligand binding by cytochrome P450 3A4.
Cytochrome P450 (P450) 3A4, the major catalyst involved in human drug oxidation, displays substrate- and reaction-dependent homotropic and heterotropic cooperative behavior. Although several models have been proposed, these mainly rely on steady-state kinetics and do not provide information on the contribution of the individual steps of P450 catalytic cycle to the observed cooperativity. In thi...
متن کاملPolymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity.
CYP2C9 catalyzes the demethylation of the biphasic kinetics substrate (S)-naproxen, and the CYP2C9*2 (R144C) and CYP2C9*3 (I359L) variants are associated with lower rates of (S)-naproxen demethylation. To assess the reasons for these reductions in catalytic activity of the two variants and potential substrate concentration-dependent differences in a biphasic kinetics substrate, cytochrome P450 ...
متن کاملDifferences in Functional Clustering of Endogenous and Exogenous Substrates Between Members of the CYP1A Subfamily
The ability of four mammalian cytochromes P450 (CYP) of the CYP1A subfamily, human and mouse CYP1A1s and human and rabbit CYP1A2s, to metabolize a series of steroids and related compounds was investigated using high throughput approaches. Oxidation rates and metabolite patterns for 16 steroid substrates and for 20 polycyclic aromatic hydrocarbon (PAH) substrates were determined in standardized ...
متن کاملDevelopment of three parallel cytochrome P450 enzyme affinity detection systems coupled on-line to gradient high-performance liquid chromatography.
A high resolution screening (HRS) technology is described, in which gradient high-performance liquid chromatography (HPLC) is connected on-line to three parallel placed bioaffinity detection systems containing mammalian cytochromes P450 (P450s). The three so-called enzyme affinity detection (EAD) systems contained, respectively, liver microsomes from rats induced by beta-naphthoflavone (CYP1A a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 46 10 شماره
صفحات -
تاریخ انتشار 2007