Direct energy functional minimization under orthogonality constraints.

نویسندگان

  • Valéry Weber
  • Joost VandeVondele
  • Jürg Hutter
  • Anders M N Niklasson
چکیده

The direct energy functional minimization problem in electronic structure theory, where the single-particle orbitals are optimized under the constraint of orthogonality, is explored. We present an orbital transformation based on an efficient expansion of the inverse factorization of the overlap matrix that keeps orbitals orthonormal. The orbital transformation maps the orthogonality constrained energy functional to an approximate unconstrained functional, which is correct to some order in a neighborhood of an orthogonal but approximate solution. A conjugate gradient scheme can then be used to find the ground state orbitals from the minimization of a sequence of transformed unconstrained electronic energy functionals. The technique provides an efficient, robust, and numerically stable approach to direct total energy minimization in first principles electronic structure theory based on tight-binding, Hartree-Fock, or density functional theory. For sparse problems, where both the orbitals and the effective single-particle Hamiltonians have sparse matrix representations, the effort scales linearly with the number of basis functions N in each iteration. For problems where only the overlap and Hamiltonian matrices are sparse the computational cost scales as O(M2N), where M is the number of occupied orbitals. We report a single point density functional energy calculation of a DNA decamer hydrated with 4003 water molecules under periodic boundary conditions. The DNA fragment containing a cis-syn thymine dimer is composed of 634 atoms and the whole system contains a total of 12,661 atoms and 103,333 spherical Gaussian basis functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of accelerators for direct energy minimization in electronic structure calculations.

We compare three different methods for direct energy minimization in electronic structure calculations where the gradient of the energy functional with respect to the molecular orbitals is available. These methods make use of the preconditioned gradient to increase robustness. An orbital transformation is used to ensure that the orthogonality constraint on the orbitals remains satisfied when us...

متن کامل

Failure of Density-matrix Minimization Methods for Linear-scaling Density-functional Theory Using the Kohn Penalty-functional

We examine the recently-proposed scheme W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)] for performing linear-scaling calculations within density-functional theory by direct minimization with respect to the single-particle density-matrix using a penalty-functional to exactly enforce the idempotency constraint. We show that such methods are incompatible with standard minimization algorithms (using co...

متن کامل

A Proximal Gradient Method for Ensemble Density Functional Theory

The ensemble density functional theory is valuable for simulations of metallic systems due to the absence of a gap in the spectrum of the Hamiltonian matrices. Although the widely used self-consistent field iteration method can be extended to solve the minimization of the total energy functional with respect to orthogonality constraints, there is no theoretical guarantee on the convergence of t...

متن کامل

Adaptive Regularized Self-Consistent Field Iteration with Exact Hessian for Electronic Structure Calculation

The self-consistent field (SCF) iteration has been used ubiquitously for solving the Kohn-Sham (KS) equation or the minimization of the KS total energy functional with respect to orthogonality constraints in electronic structure calculations. Although SCF with heuristics such as charge mixing often works remarkably well on many problems, it is well known that its convergence can be unpredictabl...

متن کامل

FUZZY TRAIN ENERGY CONSUMPTION MINIMIZATION MODEL AND ALGORITHM

Train energy saving problem investigates how to control train's velocity such that the quantity of energy consumption is minimized and some system constraints are satis ed. On the assumption that the train's weights on different links are estimated by fuzzy variables when making the train scheduling strategy, we study the fuzzy train energy saving problem. First, we propose a fuzzy energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 8  شماره 

صفحات  -

تاریخ انتشار 2008