Mathematik-Bericht 2009/10 Large coupling convergence: Overview and new results

نویسندگان

  • H. BelHadjAli
  • A. Ben Amor
  • Hichem BelHadjAli
  • Ali Ben Amor
  • Johannes F. Brasche
چکیده

Let E and P be nonnegative quadratic forms in a Hilbert space H and assume that E + bP is densely defined and closed for every b ≥ 0. For every b > 0 let Hb be the self-adjoint operator associated with E + bP in the sense of Kato’s representation theorem. By Kato’s monotone convergence theorem, the operators (Hb + 1) −1 converge strongly to an operator L, as b tends to infinity. Let k ∈ N. We give conditions which are sufficient for convergence of (Hb + 1) −k − L w.r.t. the operator norm and convergence w.r.t. to a Schatten class norm, respectively. Moreover we derive a variety of results on the rate of convergence. We discuss in detail the case when E is a regular Dirichlet form and P a killing term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematik-Bericht 2009/8 Convolution algebras for Heckman- Opdam polynomials derived from compact Grassmannians

We study convolution algebras associated with HeckmanOpdam polynomials. For root systems of type BC we derive three continuous classes of positive convolution algebras (hypergroups) by interpolating the double coset convolution structures of compact Grassmannians U/K with fixed rank over the real, complex or quaternionic numbers. These convolution algebras are linked to explicit positive produc...

متن کامل

Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems

In this paper, we provide a convergence analysis of a projection semi-implicit scheme for the simulation of fluid-structure systems involving an incompressible viscous fluid. The error analysis is performed on a fully discretized linear coupled problem: a finite element approximation and a semiimplicit time-stepping strategy are respectively used for space and time discretization. The fluid is ...

متن کامل

A finite element method for surface PDEs: matrix properties

We consider a recently introduced new finite element approach for the discretization of elliptic partial differential equations on surfaces. Themain idea of this method is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a couplin...

متن کامل

Convergence of LR algorithm for a one-point spectrum tridiagonal matrix

We prove convergence for the basic LR algorithm on a real unreduced tridiagonal matrix with a one-point spectrum the Jordan form is one big Jordan block. First we develop properties of eigenvector matrices. We also show how to deal with the singular case.

متن کامل

47 v 1 2 1 Se p 20 02 A Two Dimensional Fermi Liquid Part 1 : Overview

In a series of ten papers, of which this is the first, we prove that the temperature zero renormalized perturbation expansions of a class of interacting many– fermion models in two space dimensions have nonzero radius of convergence. The models have “asymmetric” Fermi surfaces and short range interactions. One consequence of the convergence of the perturbation expansions is the existence of a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009