W-7 modulates Kv4.3: pore block and Ca2+-calmodulin inhibition.

نویسندگان

  • Yu-Jie Qu
  • Vladimir E Bondarenko
  • Chang Xie
  • Shimin Wang
  • Mouhamed S Awayda
  • Harold C Strauss
  • Michael J Morales
چکیده

Ca(+)-calmodulin (Ca(2+)-CaM)-dependent protein kinase II (Ca(2+)/CaMKII) is an important regulator of cardiac ion channels, and its inhibition may be an approach for treatment of ventricular arrhythmias. Using the two-electrode voltage-clamp technique, we investigated the role of W-7, an inhibitor of Ca(2+)-occupied CaM, and KN-93, an inhibitor of Ca(2+)/CaMKII, on the K(v)4.3 channel in Xenopus laevis oocytes. W-7 caused a voltage- and concentration-dependent decrease in peak current, with IC(50) of 92.4 muM. The block was voltage dependent, with an effective electrical distance of 0.18 +/- 0.05, and use dependence was observed, suggesting that a component of W-7 inhibition of K(v)4.3 current was due to open-channel block. W-7 made recovery from open-state inactivation a biexponential process, also suggesting open-channel block. We compared the effects of W-7 with those of KN-93 after washout of 500 muM BAPTA-AM. KN-93 reduced peak current without evidence of voltage or use dependence. Both W-7 and KN-93 accelerated all components of inactivation. We used wild-type and mutated K(v)4.3 channels with mutant CaMKII consensus phosphorylation sites to examine the effects of W-7 and KN-93. In contrast to W-7, KN-93 at 35 muM selectively accelerated open-state inactivation in the wild-type vs. the mutant channel. W-7 had a significantly greater effect on recovery from inactivation in wild-type than in mutant channels. We conclude that, at certain concentrations, KN-93 selectively inhibits Ca(2+)/CaMKII activity in Xenopus oocytes and that the effects of W-7 are mediated by direct interaction with the channel pore and inhibition of Ca(2+)-CaM, as well as a change in activity of Ca(2+)-CaM-dependent enzymes, including Ca(2+)/CaMKII.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv4.3 expression reverses ICa remodeling in ventricular myocytes of heart failure

Background Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent L-type calcium channel (LTCC) current (ICa) remodeling is an important contributor to the disruption of calcium homeostasis in heart failure (HF). We have reported that Kv4.3 proteins play an important role in delicate regulation of the membrane-associated CaMKII activity in ventricular myocytes. Here, we investigated the...

متن کامل

Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes.

Transient outward K+ current (I to) downregulation following sustained tachycardia in vivo is usually attributed to tachycardiomyopathy. This study assessed potential direct rate regulation of cardiac I(to) and underlying mechanisms. Cultured adult canine left ventricular cardiomyocytes (37 degrees C) were paced continuously at 1 or 3 Hz for 24 hours. I to was recorded with whole-cell patch cla...

متن کامل

Regulatory mechanism of polarized membrane transport by glucocorticoid in renal proximal tubule cells: involvement of [Ca2+]i.

We examined the effect of glucocorticoids on brush border membrane transporters and, furthermore, the involvement of Ca2+ in its action in the primary cultured rabbit renal proximal tubule cells (PTCs). Dexamethasone (DEX, 10(-9) M) decreased Pi uptake by 17%; whereas DEX affected neither alpha-methyl-glucopyranoside (alpha-MG) uptake nor Na+ uptake. The DEX-induced inhibition of Pi uptake was ...

متن کامل

Large T-antigen up-regulates Kv4.3 K⁺ channels through Sp1, and Kv4.3 K⁺ channels contribute to cell apoptosis and necrosis through activation of calcium/calmodulin-dependent protein kinase II.

Down-regulation of Kv4.3 K⁺ channels commonly occurs in multiple diseases, but the understanding of the regulation of Kv4.3 K⁺ channels and the role of Kv4.3 K⁺ channels in pathological conditions are limited. HEK (human embryonic kidney)-293T cells are derived from HEK-293 cells which are transformed by expression of the large T-antigen. In the present study, by comparing HEK-293 and HEK-293T ...

متن کامل

Calmodulin antagonists inhibit secretion in Paramecium

Secretion in Paramecium is Ca2+-dependent and involves exocytic release of the content of the secretory organelle, known as the trichocyst. The content, called the trichocyst matrix, undergoes a Ca2+-induced reordering of its paracrystalline structure during release, and we have defined three stages in this expansion process. The stage I, or fully condensed trichocyst, is the 4 microns-long mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007