Lovastatin Modulates Glycogen Synthase Kinase-3β Pathway and Inhibits Mossy Fiber Sprouting after Pilocarpine-Induced Status Epilepticus

نویسندگان

  • Chun-Yao Lee
  • Thomas Jaw
  • Huan-Chin Tseng
  • I-Chun Chen
  • Horng-Huei Liou
چکیده

This study was undertaken to assay the effect of lovastatin on the glycogen synthase kinase-3 beta (GSK-3β) and collapsin responsive mediator protein-2 (CRMP-2) signaling pathway and mossy fiber sprouting (MFS) in epileptic rats. MFS in the dentate gyrus (DG) is an important feature of temporal lobe epilepsy (TLE) and is highly related to the severity and the frequency of spontaneous recurrent seizures. However, the molecular mechanism of MFS is mostly unknown. GSK-3β and CRMP-2 are the genes responsible for axonal growth and neuronal polarity in the hippocampus, therefore this pathway is a potential target to investigate MFS. Pilocarpine-induced status epilepticus animal model was taken as our researching material. Western blot, histological and electrophysiological techniques were used as the studying tools. The results showed that the expression level of GSK-3β and CRMP-2 were elevated after seizure induction, and the administration of lovastatin reversed this effect and significantly reduced the extent of MFS in both DG and CA3 region in the hippocampus. The alteration of expression level of GSK-3β and CRMP-2 after seizure induction proposes that GSK-3β and CRMP-2 are crucial for MFS and epiletogenesis. The fact that lovastatin reversed the expression level of GSK-3β and CRMP-2 indicated that GSK-3β and CRMP-2 are possible to be a novel mechanism of lovatstain to suppress MFS and revealed a new therapeutic target and researching direction for studying the mechanism of MFS and epileptogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy.

Temporal lobe epilepsy is prevalent and can be difficult to treat effectively. Granule cell axon (mossy fiber) sprouting is a common neuropathological finding in patients with mesial temporal lobe epilepsy, but its role in epileptogenesis is unclear and controversial. Focally infused or systemic rapamycin inhibits the mammalian target of rapamycin (mTOR) signaling pathway and suppresses mossy f...

متن کامل

Inhibition of the mammalian target of rapamycin signaling pathway suppresses dentate granule cell axon sprouting in a rodent model of temporal lobe epilepsy.

Dentate granule cell axon (mossy fiber) sprouting is a common abnormality in patients with temporal lobe epilepsy. Mossy fiber sprouting creates an aberrant positive-feedback network among granule cells that does not normally exist. Its role in epileptogenesis is unclear and controversial. If it were possible to block mossy fiber sprouting from developing after epileptogenic treatments, its pot...

متن کامل

Neurogenesis induced by seizures in the dentate gyrus is not related to mossy fiber sprouting but is age dependent in developing rats.

Neurogenesis in the dentate gyrus (DG) has attracted attention since abnormal supragranular mossy fiber sprouting occurs in the same region, in temporal lobe epilepsy. Thus, we submitted developing rats to pilocarpine-induced status epilepticus (SE) to study the relationship between neurogenesis and mossy fiber sprouting. Groups were submitted to SE at: I-P9, II-P7, P8 and P9, III-P17 e IV-P21....

متن کامل

Sessions of the Academia Brasileira De Ciências Summary of Communications Cell Damage and Neurogenesis in the Dentate Granule Cell Layer of Adult Rats after Pilocarpine- or Kainate-induced Status Epilepticus

Dentate granule cells are generally considered to be relatively resistant to excitotoxicity and have been associated to robust synaptogenesis after neuronal damage. Synaptic reorganization of dentate granule cell axons, the mossy fibers, has been suggested to be relevant for hyperexcitability in human temporal lobe epilepsy and animal models. A recent hypothesis has suggested that mossy fiber s...

متن کامل

Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy.

Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012