Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots

نویسندگان

  • L Přenosilová
  • Z Křesinová
  • A Slavíková Amemori
  • T Cajthaml
  • K Svobodová
چکیده

Fungal, ligninolytic enzymes have attracted a great attention for their bioremediation capabilities. A deficient knowledge of regulation of enzyme production, however, hinders the use of ligninolytic fungi in bioremediation applications. In this work, a transcriptional analyses of laccase and manganese peroxidase (MnP) production by two white rots was combined with determination of pI of the enzymes and the evaluation of 17α-ethinyloestradiol (EE2) degradation to study regulation mechanisms used by fungi during EE2 degradation. In the cultures of Trametes versicolor the addition of EE2 caused an increase in laccase activity with a maximum of 34.2 ± 6.7 U g⁻¹ of dry mycelia that was observed after 2 days of cultivation. It corresponded to a 4.9 times higher transcription levels of a laccase-encoding gene (lacB) that were detected in the cultures at the same time. Simultaneously, pI values of the fungal laccases were altered in response to the EE2 treatment. Like T. versicolor, Irpex lacteus was also able to remove 10 mg l⁻¹ EE2 within 3 days of cultivation. While an increase to I. lacteus MnP activity and MnP gene transcription levels was observed at the later phase of the cultivation. It suggests another metabolic role of MnP but EE2 degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques

White-rot basidiomycetes are one of the most important lignolytic microorganisms. These fungi have been reported to secrete three main classes of lignin degrading enzymes: lignin peroxidases (LiPs), manganese peroxidases (MnPs) and laccases. In this study, for the first time the lignin degrading capability of two plant pathogens i.e. Hyphodermella rosae and H. corrugata was evaluated using both...

متن کامل

ISEN METAGENOMIC DISCOVERY OF NOVEL LIGNIN - DEGRADING FUNGI FOR BIOFUEL PRODUCTION Louise

BACKGROUND AND OBJECTIVES The bio-conversion of plant lignocellulose to glucose is an key component of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process. Filamentous fungi possess the unique ability to decompose the aromatic lignin polymers using enzymes encoded by divergent gene families. White-rot fungi are the primary lignin-d...

متن کامل

Improvement of ligninolytic properties in the hyper lignin-degrading fungus Phanerochaete sordida YK-624 using a novel gene promoter.

We identified a highly expressed protein (BUNA2) by two-dimensional gel electrophoresis from the hyper lignin-degrading fungus Phanerochaete sordida YK-624 under wood-rotting conditions. Partial amino acid sequences of BUNA2 were determined by LC-MS/MS analysis, and BUNA2 gene (bee2) and promoter region were PCR-cloned and sequenced. The bee2 promoter was used to drive the expression of the man...

متن کامل

Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi.

Some of the industries that discharge highly colored effluents are paper and pulp mills, textiles and dye-making industries, alcohol distilleries, and leather industries. Terrestrial white-rot basidiomycetous fungi and their lignin-degrading enzymes laccase, manganese-peroxidase and lignin peroxidases are useful in the treatment of colored industrial effluents and other xenobiotics. Free myceli...

متن کامل

Time-dependent profiles of transcripts encoding lignocellulose-modifying enzymes of the white rot fungus Phanerochaete carnosa grown on multiple wood substrates.

The abundances of nine transcripts predicted to encode lignocellulose-modifying enzymes were measured over the course of Phanerochaete carnosa cultivation on four wood species. Profiles were consistent with sequential decay; transcripts encoding lignin-degrading peroxidases featured a significant substrate-dependent response. The chitin synthase gene was identified as the optimal internal refer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013