Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data
نویسنده
چکیده
The microwave interferometric radiometer of the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a snow layer on top of the ice. Here, we implement a snow layer in our emission model and investigate how snow influences Lband brightness temperatures and whether it is possible to retrieve snow thickness over thick Arctic sea ice from SMOS data. We find that the brightness temperatures above snowcovered sea ice are higher than above bare sea ice and that horizontal polarisation is more affected by the snow layer than vertical polarisation. In accordance with our theoretical investigations, the root mean square deviation between simulated and observed horizontally polarised brightness temperatures decreases from 20.9 K to 4.7 K, when we include the snow layer in the simulations. Although dry snow is almost transparent in L-band, we find brightness temperatures to increase with increasing snow thickness under cold Arctic conditions. The brightness temperatures’ dependence on snow thickness can be explained by the thermal insulation of snow and its dependence on the snow layer thickness. This temperature effect allows us to retrieve snow thickness over thick sea ice. For the best simulation scenario and snow thicknesses up to 35 cm, the average snow thickness retrieved from horizontally polarised SMOS brightness temperatures agrees within 0.1 cm with the average snow thickness measured during the IceBridge flight campaign in the Arctic in spring 2012. The corresponding root mean square deviation is 5.5 cm, and the coefficient of determination is r2 = 0.58.
منابع مشابه
Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data
In this study, six Arctic sea ice thickness products are compared: the AVHRR Polar Pathfinder-extended (APP-x), ICESat, CryoSat-2, SMOS, NASA IceBridge aircraft flights, and the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). The satellite products are based on three different retrieval methods: an energy budget approach, measurements of ice freeboard, and the relationship betwe...
متن کاملOn the Retrieval of Sea Ice Thickness and Snow Depth using Concurrent Laser Altimetry and L-Band Remote Sensing Data
The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, are key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave sensing, although the sea ...
متن کاملSea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period
[1] The Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) on board the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission for the first time measures globally Earth’s radiation at a frequency of 1.4 GHz (L-band). It had been hypothesized that L-band radiometry can be used to measure the sea ice thickness due to the large penetration depth in the sea ice me...
متن کاملEmpirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations
Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high ...
متن کاملEstimation of snow water equivalent over first-year sea ice using AMSR-E and surface observations
Keywords: Snow water equivalent Arctic First-year sea ice Passive microwaves Surface based radiometer AMSR-E Ice roughness Climate change A SWE retrieval algorithm developed in-situ using passive microwave surface based radiometer data is applied to the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E). Snow water equivalent is predicted from two pixels located in Can...
متن کامل