Hausdorff measures of different dimensions are not Borel isomorphic
نویسنده
چکیده
We show that Hausdorff measures of different dimensions are not Borel isomorphic; that is, the measure spaces (R, B, H) and (R, B, H) are not isomorphic if s 6= t, s, t ∈ [0, 1], where B is the σ-algebra of Borel subsets of R and H is the d-dimensional Hausdorff measure. This answers a question of B. Weiss and D. Preiss. To prove our result, we apply a random construction and show that for every Borel function f : R → R and for every d ∈ [0, 1] there exists a compact set C of Hausdorff dimension d such that f(C) has Hausdorff dimension ≤ d. We also prove this statement in a more general form: If A ⊂ R is Borel and f : A→ R is Borel measurable, then for every d ∈ [0, 1] there exists a Borel set B ⊂ A such that dimB = d ·dimA and dim f(B) ≤ d · dim f(A).
منابع مشابه
On Hausdorff’s moment problem in higher dimensions
Denote by μn = ∫ x n1 1 . . . x nd d dμ(x) the n’th moment of a Borel probability measure μ on the unit cube I = [0, 1] in R. Generalizing results of Hausdorff, Hildebrandt and Schoenberg, we give a sufficient condition in terms of moments, that μ is absolutely continuous with respect to a second Borel measure ν on I. We also review a constructive approximation of measures by atomic measures us...
متن کاملRegularity of group valued Baire and Borel measures
It is known that a real valued measure (1) on the a-ring of Baire sets of a locally compact Hausdorff space, or (2) on the Borel sets of a complete separable metric space is regular. Recently Dinculeanu and Kluvanek used regularity of non-negative Baire measures to prove that any Baire measure with values in a locally convex Hausdorff topological vector space (TVS) is regular. Subsequently a di...
متن کاملMeasures and Dimensions of Julia Sets of Semi-hyperbolic Rational Semigroups
We consider the dynamics of semi-hyperbolic semigroups generated by finitely many rational maps on the Riemann sphere. Assuming that the nice open set condition holds it is proved that there exists a geometric measure on the Julia set with exponent h equal to the Hausdorff dimension of the Julia set. Both h-dimensional Hausdorff and packing measures are finite and positive on the Julia set and ...
متن کاملOn the theory of Hausdorff measures in metric spaces
In this work the main objective is to extend the theory of Hausdorff measures in general metric spaces. Throughout the thesis Hausdorff measures are defined using premeasures. A condition on premeasures of ‘finite order’ is introduced which enables the use of a Vitali type covering theorem. Weighted Hausdorff measures are shown to be an important tool when working with Hausdorff measures define...
متن کاملComparing the Uniformity Invariants of Null Sets for Different Measures
The uniformity invariant for Lebesgue measure is defined to be the least cardinal of a non-measurable set of reals, or, equivalently, the least cardinal of a set of reals which is not Lebesgue null. This has been studied intensively for the past 30 years and much of what is known can be found in [?] and other standard sources. Among the well known results about this cardinal invariant of the co...
متن کامل