ATP regulation of the slow calcium channels in vascular smooth muscle cells of guinea pig mesenteric artery.
نویسندگان
چکیده
Effects of intracellularly perfused ATP, and extracellularly applied cyanide and 2-deoxy-D-glucose, on fast and slow Ca2+ channel currents of isolated single vascular smooth muscle cells were investigated by a whole-cell voltage-clamp method combined with an intracellular perfusion technique. Single smooth muscle cells were prepared by collagenase treatment from guinea pig small mesenteric arteries (diameter of less than 300 micron). With Cs+-rich solution in the pipette and isotonic Ba2+ solution (100 mM) in the bath, depolarizing pulses evoked two types of the Ca2+ channel current. Depolarizing pulses from the holding potential of -80 mV to over -30 mV evoked a fast Ca2+ channel current. This fast component was inhibited by shifting the holding potential in a positive direction. With a holding potential of -40 mV, the fast component was almost inhibited. In contrast, the slow current was evoked by command potentials to above -10 mV, and its full amplitude was preserved at the holding potential of -40 mV. Without ATP in the pipette, the fast current was dominant. Increase in the ATP concentration in the pipette (0.3 to 5 mM) enhanced the slow current but did not affect the fast current. Maximum enhancement of the slow current was observed at 5 mM ATP. Increase in ATP concentration, however, did not modify the shape of the current trace and the steady state inactivation curve of the slow current. Maximum amplitudes of the fast current and slow current recorded with 5 mM ATP averaged 17.4 pA (SD of 10.4 pA, n = 30; observed at -10 mV to +10 mV) and 141.8 pA (SD of 27.1 pA, n = 30; observed at +30 mV to +40 mV), respectively. Presence of CN- and 2-deoxy-D-glucose (without glucose) in the bath, and absence of ATP in the pipette, abolished the slow current within 10 minutes; in contrast, it took more than 10 minutes to depress the fast current. The inhibitory effect of CN- and 2-deoxy-D-glucose on the slow current was reduced by intracellular application of ATP. In summary, the activation of the slow Ca2+ channel required physiological concentration of ATP, whereas the fast channel current was preserved, even under ATP-free conditions. These results indicate that only the slow current is a metabolically dependent Ca2+ channel current in these vascular smooth muscle cells.
منابع مشابه
Analysis of acetylcholine-induced membrane responses in vascular endothelial cells of the guinea-pig mesenteric artery using mefloquine as a gap junction blocker.
Acetylcholine (ACh)-induced membrane currents were investigated using freshly isolated endothelial layers prepared from the guinea-pig mesenteric artery. Gap junctions were blocked by mefloquine and the whole-cell patch clamp method was applied to individual endothelial cells within each multicellular preparation. While mefloquine effectively blocked the gap junctions, it hyperpolarized the mem...
متن کاملDirect stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells.
ATP-sensitive K+ (K(ATP)) channels in vascular smooth muscle cells (VSMC) are important targets for endogenous metabolic regulation and exogenous drug therapy. H2S, as a novel gasotransmitter, has been shown to relax rat aortic tissues via opening of K(ATP) channels. However, interaction of H2S, exogenous-applied or endogenous-produced, with K(ATP) channels in resistance artery VSMC has not bee...
متن کاملATP-sensitive K(+) channels composed of Kir6.1 and SUR2B subunits in guinea pig gastric myocytes.
This study was designed to identify the single-channel properties and molecular entity of ATP-sensitive K(+) (K(ATP)) channels in guinea pig gastric myocytes with patch-clamp recording and RT-PCR. Pinacidil and diazoxide activated K(ATP) currents in a glibenclamide-sensitive manner. The open probability of channels was enhanced by the application of 10 microM pinacidil from 0.085 +/- 0.04 to 0....
متن کاملPreventive effects of ipratropium and salbutamol against insulin induced tracheal smooth muscle contraction in guinea pig model
Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and ipratropium against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. ...
متن کاملPharmacology and modulation of K(ATP) channels by protein kinase C and phosphatases in gallbladder smooth muscle.
ATP-sensitive K(+) (K(ATP)) channels exhibit pharmacological diversity, which is critical for the development of novel therapeutic agents. We have characterized K(ATP) channels in gallbladder smooth muscle to determine how their pharmacological properties compare to K(ATP) channels in other types of smooth muscle. K(ATP) currents were measured in myocytes isolated from gallbladder and mesenteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 64 1 شماره
صفحات -
تاریخ انتشار 1989